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ABSTRACT 

The U.S. Army Training and Doctrine Command (TRADOC) Analysis Center 

(TRAC) and the Modeling, Virtual Environments, and Simulations Institute (MOVES) at 

the Naval Postgraduate School, Monterey, California, developed the Assignment 

Scheduling Capability for UAVs (ASC-U) simulation to assist in the analysis of 

unmanned aerial vehicle (UAV) requirements for the current and future force.  ASC-U 

employs a discrete event simulation coupled with the optimization of a linear objective 

function.  At regular intervals, ASC-U obtains an optimal solution to a simplified 

problem that assigns available UAVs to missions that are available or will be available 

within a future time horizon.    

This thesis simultaneously explores the effects of 26 simulation and UAV factors 

on the mission value derived when allocating UAVs to mission areas.  The analysis 

assists in defining the near term (2008) UAV force structure and the investment strategy 

for the mid term (2013), and far term (2018).  We combine an efficient experimental 

design, exploratory modeling, and data analysis to examine 514 variations of a scenario 

involving five UAV classes and over 21,000 mission areas.  The conclusions suggest the 

following: the optimization interval significantly influences the quality of the solution, 

percent mission coverage may depend on a few UAV performance factors, small time 

horizons increase percent mission coverage, and carefully planned designs assist in the 

exploration of the outer and interior regions of the response surface. 
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EXECUTIVE SUMMARY 

The U.S. Army Training and Doctrine Command (TRADOC) Analysis Center 

(TRAC) and the Modeling, Virtual Environments, and Simulations Institute (MOVES) at 

the Naval Postgraduate School, Monterey, California developed the Assignment 

Scheduling Capability for UAVs (ASC-U) simulation tool to assist in the analysis of 

UAV requirements.  TRAC selected ASC-U for the Army-wide UAV Mix Analysis that 

supports investment strategies involving technology for current operations, transitioning 

to modular forces, and developing and fielding the Future Combat Systems (FCS).  The 

purpose of this thesis is to assess how changes in the input factors concerning simulation 

settings (time horizon and optimization interval) and UAV characteristics influence the 

Measures of Effectiveness (MOEs) generated by ASC-U.   

This thesis explores the effects of 26 simulation and UAV factors on the MOEs 

generated by ASC-U. We focus on four specific areas of research concerning the 

allocation of UAVs within the ASC-U simulation: 

 
1. What are the appropriate time horizons and optimization interval (decision point 

where UAVs are allocated to mission areas) to use within ASC-U? 
   
2. Which UAV characteristics and performance capabilities significantly influence 

the MOEs? 
 
3. Are there any significant interactions between factors or relationships between the 

MOEs? 
 
4.  What are appropriate Design of Experiment (DOE) methodologies and tools to 

incorporate into ASC-U for the Army’s UAV Mix Analysis?  
 

ASC-U is a scheduling model that applies UAV resources against the schedule of 

mission requirements within an operational scenario.  ASC-U employs a discrete event 

simulation coupled with the optimization of a linear objective function.  The model is 

based on the framework developed for Dynamic Allocation of Fires and Sensors used to 

evaluate factors associated with networking assets in the FCS. Given a scenario and a 

mix of UAVs, ASC-U determines a schedule for executing UAV missions.  The 



 xvi

simulation tool considers airframe capabilities, payloads, the locations and capacities of 

ground control stations and launch and recovery sites, remote viewing terminals 

requirements, and communication footprints and. 

The scenario consists of a set of mission area locations and requirements, friendly 

unit locations, platform and payload characteristics, and ground control characteristics.  

Each mission area has a set of sensor, weapon, or communication requirements.  The 

mission areas do not move during the simulation.  Rather, each area has a start and end 

time associated with it.  As the simulation proceeds, mission areas “open” and “close” 

creating a time window in which UAVs with correct capabilities can service the mission.  

The number and type of UAVs constrain the solution, as do UAV performance 

capabilities such as air speed, operating time, transition time, and operating radius.  The 

number and capacities of ground control stations (GCSs) and launch and recovery sites 

(LRSs) also constrain the solution.  Additionally, the GCSs and LRSs move during the 

execution of the scenario. 

The research conducted in this thesis takes advantage of experimental design 

techniques based on statistical theory and developed to assist researchers in the analysis 

of computer simulations.  The primary goal of experimental design is to assess how 

changes in input parameters (factors) affect the results (responses).  We select 26 factors 

for our exploration consisting of 25 UAV performance characteristics and the 

simulation’s optimization interval.  The ranges for the UAV factors are created by adding 

and subtracting 20% of the base scenario value.  We set the range for the optimization 

interval between one and ten simulation hours. 

We use the space-filling design of Nearly Orthogonal Latin Hypercubes (NOLH) 

to provide an exploration of the outer and interior regions of the response surface.  NOLH 

designs allow the analyst to develop a comprehensive set of explanatory variables 

represented in the model.  Instead of being restricted to two or three levels, the analyst 

can create a design that uses multiple or even a continuous range of values for each 

factor.  This facilitates the identification of non-linearities within the response surface.  



 xvii

In addition to good space-filling properties, orthogonality is another feature of 

designs that make them effective.  Orthogonal designs have no linear relationship 

between the regressors.  The NOLH technique reduces the correlation between factor 

columns, creating a nearly orthogonal design matrix.  We can examine the off-diagonal 

elements within the correlation matrix of the design in order to measure the level of 

orthogonality.  The spreadsheet design tool used in the research has several features that 

guard against multicollinearity and produce a robust space-filling design. 

We combine data analysis, exploratory modeling and a Nearly Orthogonal Latin 

Hypercube design to examine the output of 514 distinct scenarios (called design points).  

In doing so, we expand the use of ASC-U from running single scenarios with baseline 

settings to a full exploration across multiple factors.  The application and insights gained 

will support current and future warfighters.  Additionally, the research will assist in ASC-

U’s development and application across a robust set of future mission scenarios.  The 

conclusions suggest the following: 

• The optimization interval significantly influences the UAV schedule and its 
quality. 

• Mission value and percent coverage are not equivalent MOEs. 

• An optimization interval of one simulation hour provides better correlation 
between mission value and percent mission coverage. 

• Longer time horizons result in poor allocation decisions, as observed in the 
coefficients of the regression models. 

• Each measure of effectiveness has a different set of significant factors. 

• Class I UAV operating time and Class IV operating radius are the main 
factors influencing 14 of 21 MOEs. 

• Class IV UAV operating radius begins to make significant improvement to 
coverage at below baseline settings. 

• Longer Class I UAV operating times increase all other UAV mission percent 
coverages. 

• State-of-the-art design of experiment and data mining techniques yield 
insights impossible to gain otherwise. 
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I. INTRODUCTION  

A. BACKGROUND 
During the past three years, the United States Army has developed three 

investment paths associated with equipping the Army.  The paths include investments in 

the following: technology required for the immediate needs of current operations, 

transition to modular forces, and development and fielding of the Future Combat System 

(FCS) equipped forces.  All of these investment paths include Unmanned Aerial Vehicles 

(UAVs), UAV organizations, UAV payloads, ground control capabilities, and 

sustainment (Witsken, 2004). 

The Army’s goal is to transition from the current modular force UAV mix to the 

future force UAV mix.  The analysis supporting the evolution of the modular force will 

generate the key tasks and purpose that involve a future UAV capability, and recommend 

types and quantities of UAVs required by all types of maneuver and support brigades. 

(Witsken, 2004)  The Modeling, Virtual Environments, and Simulations Institute 

(MOVES) and the U.S. Army Training and Doctrine Command (TRADOC) Analysis 

Center (TRAC) at the Naval Postgraduate School developed the Assignment Scheduling 

Capability for UAVs (ASC-U) simulation tool to assist in the analysis of UAV 

requirements for the modular force. 

ASC-U employs a discrete event simulation model coupled with the optimization 

of a linear objective function.  ASC-U determines a schedule for UAV missions that can 

be successfully executed in a scenario with a specific mix of UAVs.  At regular 

intervals, ASC-U obtains an optimal solution to a simplified problem that assigns 

available UAVs to missions that are available or will be available within a future time 

horizon.  The simulation derives an overall mission value for each assignment by 

considering the required flight time to each mission area and the amount of time each 

UAV covers the area.     

The Director of TRAC wants to compare and correlate the methodology and 

results of ASC-U to other simulation programs such as Vector-In-Commander (VIC), 
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Advanced Warfighting Simulation (AWARS), Combined Arms and Support Task Force 

Evaluation Model (CASTFOREM), and Combat XXI.  The objective is to assess the 

compatibility between all five models to ensure accurate UAV evaluation for future UAV 

studies (Witsken, 2004). 

  

B. PURPOSE 
The purpose of this thesis is to assess how changes in the input factors concerning 

simulation settings (time horizon and optimization interval) and UAV characteristics 

influence the overall mission value and other MOEs derived when allocating UAVs to 

mission areas in the ASC-U simulation.  Additionally, the analysis assists in defining the 

near term (2008) UAV force structure and the follow-on development of the investment 

strategy for the mid term (2013), and far term (2018) (Witsken, 2004).   

 

C. RESEARCH QUESTIONS 
This thesis focuses on four specific areas of research concerning the allocation of 

UAVs within the ASC-U simulation: 

 
1. What are the appropriate time horizons and optimization interval to use within 

ASC-U? 
   
2. Which UAV characteristics and performance capabilities significantly influence 

the MOEs? 
 
3. Are there any significant interactions between factors or relationships between the 

MOEs? 
 
4.  What are appropriate Design of Experiment (DOE) methodologies and tools to for 

the Army’s UAV Mix Analysis?   

 

D. RESEARCH SCOPE 
The Assignment Scheduling Capability for UAVs (ASC-U) simulation tool 

considers a dynamic UAV routing problem.  It determines a feasible schedule for UAV 

missions given a scenario and a specific mix, type and number of UAVs.  ASC-U does 

not consider several factors that may influence the solution, such as attrition of aircraft, 
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maintenance and sustainability, communications, terrain effects and weather.  We do not 

consider these factors in this study.  Our research is confined to investigating the factors 

considered by ASC-U that influence the allocation of UAVs to mission areas.  The 

following areas provide the scope of our research:  

• Define the capabilities of the simulation. 

• Provide a DOE methodology for the simulation. 

• Identify an appropriate optimization interval. 

• Identify appropriate time horizons for UAV types. 

• Assess the influence of factors on the MOEs supported by ASC-U. 

• Conduct data analysis on the simulation output. 

• Fit regression models to the data output. 

 

E. THESIS ORGANIZATION 
Chapter II introduces the Army’s Future Combat System program.  It provides an 

overview of the types of UAVs considered in the study.  Included is a brief description of 

each aircraft and its capabilities.  Chapter III discusses the formulation of the UAV 

allocation problem and describes ASC-U’s approach to the solution.  Chapter IV 

describes the selection of factors included in our experiment, the development of design 

points (scenarios) on which ASC-U is tested, and the statistical software selected for the 

analysis.  Chapter V provides an analysis of the ASC-U output data and the regression 

models fit for 21 different MOEs.  Chapter VI summarizes conclusions drawn from this 

overall study and provides recommendations for follow-on research. 
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II. FUTURE COMBAT SYSTEM 

It shall be a goal of the Armed Forces to achieve the fielding of 
unmanned, remotely controlled technology such that by 2010, one-third of 
the operational deep strike aircraft of the Armed Forces are unmanned; 
and by 2015, one-third of the operational ground combat vehicles of the 
Armed Forces are unmanned (106th Congress, 2000). 

 

National Defense Authorization Act for 
Fiscal Year 2001 H.R.4205, Sec. 217 

 

The Army’s Future Combat System (FCS) comprises a research, development, 

and acquisition program that extends over three decades and includes a multi-billion-

dollar budget.  The Chief of Staff of the Army (CSA) General Eric Shinseki introduced 

the FCS program in October 1999.  The program originally entailed the transformation of 

the Army’s Legacy Forces that is comprised of divisions into a lighter, modular 

organization called the Objective Force.  Initial plans were to field the first of such 

modular-equipped forces in 2011 and complete the entire Objective Force by 2032.  In 

order to bridge the gap between the Legacy Force and the Objective Force, and fill near-

term warfighting requirements, the program called for an Interim Force consisting of 

active Army and Army National Guard units.  These brigade-sized units are known as 

Interim Brigade Combat Teams (IBCTs) or Stryker Brigade Combat Teams (SBCTs).  

The first of such units have seen combat in Iraq.  The last IBCT is scheduled for fielding 

in 2010 (“Unmanned Aircraft,” 2005). 

General Shinseki’s successor, General Peter Schoomaker, changed portions of the 

FCS program in 2003.  He started by redefining the Objective Force as the Future Force 

and called for spiral development, incorporating functional FCS capabilities as they 

became available.  Additionally, General Schoomaker placed greater importance on the 

system of networks required to link Army forces as well as Joint forces together 

(“Unmanned Aircraft,” 2005). 
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On July 21, 2004, the Army announced another round of restructuring for the FCS 

program.  A primary objective of the restructuring included four phases of spiraling in 

new technologies to the existing force starting in fiscal year 2008.  The remaining three 

spiral dates are scheduled to occur in 2010, 2012, and 2014.  The second modular-

equipped brigade, also known as a Unit of Action (UA), is scheduled for fielding in 2015 

with two more brigades fielded each year after 2015 for a total of 15 FCS-equipped 

brigades (“Unmanned Aircraft,” 2005). 

The FCS is a joint networked “system of systems.”  The intent is to facilitate 

connectivity with other services, increase situational awareness, and allow for the 

synchronization of operations.  The heart of the FCS relies on advanced technologies and 

an extensive communications network.  Binding this network together are eighteen 

projected manned and unmanned systems.  The net-centric dimension of the FCS is 

essential to the Future Force’s capability to “see first, understand first, act first, and 

finish decisively across the full spectrum of operations” (Knarr, Haskins, & Mouras, 

2001).  Unmanned aerial vehicles are central to seeing and understanding the enemy first. 

The ASC-U simulation tool is capable of modeling different scenarios with 

potentially unlimited varieties of UAVs.  In this study, we consider several types of 

UAVs based on characteristics and performance capabilities of the Interim Force UAVs.  

These include the small (SUAV) and tactical (TUAV) vehicles, and the extended range 

multipurpose (ERMP) UAV.  We also considered UAVs that will make up the modular 

brigades found in the Future Force.  The following sections provide an overview of the 

different UAVs considered in the study.  Included is a brief description of each aircraft 

and its capabilities. 
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A. SMALL UNMANNED AERIAL VEHICLE (SUAV) 
 

Figure 1. SUAV – RQ-11 Raven (From “Raven UAVs,” 2005). 

 

In the 1990s, the Army became interested in UAVs capable of providing 

Reconnaissance, Surveillance and Target Acquisition (RSTA) at the company and 

platoon level.  This capability requirement was reflected in the FCS program with the call 

for Class I and II UAVs beginning in 1999.  The need for small unmanned aerial vehicles 

(SUAVs) increased as forces were deployed in Operation Enduring Freedom (OEF) in 

2001 and again for Operation Iraqi Freedom (OIF) in 2003.  Within 20 weeks of the 

authorization of program funding, the first of these lightweight vehicles were deployed 

with forces in OEF.  Special Operations Forces and Rangers took advantage of the 

SUAVs in the rugged terrain of Afghanistan (Jenkins & Snodgrass, 2005).  The Army 

purchased over 500 SUAVs for OEF and OIF (“Unmanned Aircraft,” 2005).  

Commanders have been lauding their capabilities ever since. 

What started this “rave” was a commercial off the shelf (COTS) device called the 

Raven, displayed in Figure 1.  The RQ-11A Raven is considered a small unmanned aerial 

vehicle (SUAV).  It provides intelligence, reconnaissance, and surveillance (ISR) 

capabilities to platoons through battalions in a variety of scenarios to include Military 

Operations in Urban Terrain (MOUT) (Jenkins & Snodgrass, 2005).  AeroVironment Inc. 
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developed the Raven after its success with the FQM-151 Pointer that has deployed with 

the Marines, Army, and Air force since 1988 (“Unmanned Aircraft,” 2005).  Taking 

advantage of technology developments in batteries and microelectronics, the Raven is 

two-thirds the size and weight of its predecessor. 

Table 1 displays the performance capabilities of the RQ-11B Raven.  The Raven 

system consists of three airframes and one Ground Control Station (GCS).  The platform 

runs on single-use and rechargeable batteries and is able to employ three sets of sensor 

packages:  high-resolution day camera, high-resolution night imager, and a side-view 

thermal imager (“Unmanned Aerial,” 2004).  Crews hand-launch the Raven and recover 

it using an onboard autonomous pilot system (Jenkins & Snodgrass, 2005). 

The Raven is a combat multiplier, providing units with beyond-line-of-sight 

(BLOS) capability and reduction of “troops to task” (TTT) by keeping soldiers out of 

harm’s way when possible.  The system transmits live video images, along with telemetry 

data such as compass headings and location, to ground control units (GCUs) and remote 

video terminals (RVTs) (“Unmanned Aircraft,” 2005).  

 

  RQ-11B  RQ-11B 
Length 36 in Wing Span 55 in 
Gross 
Weight 

4.0 lbs Payload  
Weight 

6.5 oz 

Engine   direct drive 
electric 

Battery LiSO2         
Li-Ion 

Endurance 90 min Max Speeds 30 mph 
Ceiling 1,000 ft Operating 

Radius 
10 km 

Launch hand Landing  auto      
deep stall 

Sensor EO/IR   

 

Table 1. Raven RQ-11B Characteristics and Performance Data (After “Unmanned 
Aircraft,” 2005). 
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B. TACTICAL UNMANNED AERIAL VEHICLE (TUAV) 
 

Figure 2. TUAV – RQ-7 Shadow (From “ERMP,” 2005).   

 

In December 1999, AAI Corporation, a subsidiary of United Industrial 

Corporation, was awarded an initial contract to produce a tactical unmanned aerial 

vehicle (TUAV) system.  The system is designed to provide brigade commanders with a 

host of battle management capabilities to include target acquisition and battle damage 

assessment (BDA) (“U.S. Army,” 2001).  Thirty-three months later, the Assistant 

Secretary of the Army for Acquisition, Logistics and Technology, Claude Bolton Jr., 

authorized the Shadow 200 RQ-7 TUAV program to enter into full rate production.  The 

contract with AAI Corporation is scheduled to provide 41 Shadow 200 TUAVs for the 

Army’s six Stryker Brigade Combat Teams.  All six brigades will receive the Shadow 

system by May 2006 (Mahnken, 2002).  AAI’s contract was a key success for the Army’s 

Transformation program, demonstrating an accelerated effort to fill a capability gap for 

field commanders. 

The Shadow, displayed in Figure 2, is intended for ground maneuver brigade 

commanders.  It provides a sustainable capability for reconnaissance, surveillance, target 

acquisition and battle damage assessment.  The aerial platform transmits images and 

telemetry data to control stations, providing the commander and his staff with valuable 
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information to plan, execute, and support ongoing missions.  The TUAV’s platoon 

consists of four airframes, six High Mobility Multi-purpose Wheeled Vehicles 

(HMMWV), two Ground Control Stations (GCS), four RVTs, antennas, and one Portable 

Ground Control Station (PGCS) and Data Terminal (PGDT) (Mahnken, 2002).  The 

system includes three Shadow platforms with a fourth vehicle issued to the maintenance 

section (“AAI,” 2006).  The platoon consists of 22 personnel capable of sustaining flight 

operations on a 24-hour basis (“Unmanned Aerial,” 2004). 

Table 2 provides the performance capabilities of the RQ-7A Shadow.  The TUAV 

has a wingspan of approximately 13 feet and has a gross weight of slightly over 300 

pounds.  It can carry a payload of 60 pounds and is equipped with an electro-

optic/infrared sensor package.  The platform is launched using a pneumatic launcher and 

is recovered using an automatic landing system.  During flight, control of the Shadow can 

be transferred between GCUs; it can land at alternate LRSs to keep up with a brigade’s 

rapid operational tempo (OPTEMPO) (Mahnken, 2002).  The Shadow is capable of 

loitering above a mission area for four hours, at 50 kilometers from an LRS.  It has a 

maximum range of 125 kilometers, operating at 8,000 to 10,000 feet during the day and 

6,000 to 8,000 feet at night (Mahnken, 2002). 

The Army’s deputy chief of staff G-3 directed that the Shadow 2000 be fielded 

with every maneuver brigade in OIF and OEF.  As of June 2004, Shadow platoons 

existed in five divisions and two Stryker brigades (2nd Infantry Division and 25th Infantry 

Division) (“Unmanned Aerial,” 2004).   
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  RQ-7A RQ-7B  RQ-7A RQ-7B 
Length 11.2 ft 11.2 ft Wing Span 12.8 ft 14 ft 
Gross 
Weight 

327 lb 375 lb Payload 
Capacity 

60 lb 60 lb 

Fuel 
Capacity 

51 lb 73 lb Fuel Type MOGAS MOGAS 

Engine 
Make 

UEL      
AR-741 

UEL      
AR-741 

Power 38 hp 38 hp 

Data Link(s) LOS C2  
LOS Video 

LOS C2   
LOS Video 

Frequency S-band 
UHF 

C-band 

S-band 
UHF 

C-band 
Endurance 5 hr 7 hr Max/Loiter 

Speeds 
110/70 kt 105/60 kt 

Ceiling 14,000 ft 15,000 ft Operating 
Radius 

68 nm 68 nm 

Launch catapult catapult Landing    arresting 
wire 

arresting 
wire 

Sensor EO/IR EO/IR Sensor 
Make 

Tamam 
POP 200 

Tamam 
POP 300 

 

Table 2. Shadow RQ-7A/B Characteristics and Performance Data (After 
“Unmanned Aircraft,” 2005). 
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C. EXTENDED RANGE MULTIPURPOSE (ERMP) UAV 
 

Figure 3. ERMP – Warrior (From “ERMP,” 2005). 

 

The first endurance platform was the General Atomics RQ-1 Predator (Goebel, 

2006).  The “R” in the nomenclature indicates reconnaissance and the “Q” stands for the 

unmanned nature of the vehicle.  The Predator first saw combat in Bosnia in 1995 and 

again in 1999 during Operation Allied Force (Kosovo).  The UAV distinguished itself in 

ISR operations in Kosovo by providing video feeds to the command center at Aviano 

Airbase, Italy.  Forward air controllers (FACs) used the information to acquire difficult 

targets.  By the end of the conflict, the UAV was upgraded with laser designators (Bone 

& Bolkcom, 2003). 

As the capabilities and sensor packages on the aircraft increased (strike and ISR), 

the nomenclature was changed to “M” for multi-mission (John, Shaver, Lynch, 

Amouzegar, & Snyder, 2005). With its new designation “MQ,” the Predator was able to 

demonstrate its new capabilities starting in OEF (Bone & Bolkcom, 2003).  The arched 

front of the aircraft contains a forward-looking Synthetic Aperture Radar (SAR) that 

scans from the “chin” panel.  Westinghouse originally developed SAR for the cancelled 

US Navy A-12 strike aircraft.  It provides 30-centimeter (1 foot) resolution at operational 

altitudes of 50,000 feet.  The Versatron Skyball turret houses the electro-optic (EO) and 

infrared (IR) sensors (Goebel, 2006).  The Predator is capable of carrying a laser 
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designator (LD) to illuminate targets in order to guide munitions launched by itself or 

other strike aircraft to their destination.  The Predator uses direct radio frequencies (RF) 

or satellite links to receive and transmit control information and download data. The 

UAV provides real-time data to other platforms, such as the J-STARS surveillance 

aircraft, ground stations, and naval vessels (Goebel, 2006). 

In the summer of 2005, the U.S. Army created an Extended Range Multi-Purpose 

(ERMP) UAV requirement.  This initiative began with a contract to General Atomics for 

an enhanced Predator called the Warrior, displayed in Figure 3.  The improved endurance 

aircraft will boast a heavy communication relay capability, enhanced strike payloads, and 

up to thirty-six hours of operating time (Bone & Bolkcom, 2003).  Additional payloads 

include electro-optic/infrared (EO/IR) with laser designator and synthetic aperture 

radar/moving target indicator (SAR/MTI) (“Unmanned Aerial,” 2004).  The Army is 

planning to purchase 11 systems consisting of 12 UAVs and 5 control stations per 

system.  The initial fielding is projected to begin in 2009 (Bone & Bolkcom, 2003).  

Table 3 provides the performance capabilities of the MQ-9A Predator. 

 

  MQ-9A  MQ-9A 
Length 36 ft Wing Span 66 ft 
Gross Weight 10,500 lb Payload Capacity *750 lb 
Fuel Capacity 4,000 lb Fuel Type JP 
Engine Make Honeywell TPE 

331-10 
Power 900 shp 

Data Link(s) BLOS 
LOS 

Frequency Ku-band 
C-band 

Endurance 30 hr clean/       
16-20 hr external 

stores 

Max/Loiter 
Speeds 

225/TBD kt 

Ceiling 50,000 ft Operating Radius 2,000 nm 
Launch runway Landing   runway 
Sensor EO/IR Sensor Make MTS-B 
  SAR/MTI Weapons 4, 500 lb class or 

8-10, 250 lb class 
*Up to 3,000 lb total externally on wing hardpoints.  

 
Table 3. Predator MQ-9A Characteristics and Performance Data (After “Unmanned 

Aircraft,” 2005). 
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D. FUTURE COMBAT SYSTEM UAVS 
The Army’s concept of the FCS relies heavily on a communications network 

linking the system together.  Unmanned vehicles are an integral component of the 

network and systems-of-systems assembly.  The Army envisions unmanned aerial 

vehicles assigned to maneuver and support elements that include infantry, armor, scout, 

intelligence, aviation, artillery, and medical units.  Mission capabilities include 

intelligence, surveillance and reconnaissance (ISR), battle damage assessment, targeting, 

convoy protection, chemical agent and improvised explosive device (IED) detection 

(“Unmanned Aerial,” 2004).  Integration and commonality across UAV systems will be 

essential for seamless and effective operations.   

Each unit of action (UA) is projected to have approximately 200 UAVs that are 

organic across each echelon of the command from the platoon to brigade level (Erwin, 

2003).  The Army has defined four classes for the Future Force UAVs, based on the 

platform’s capabilities and operational requirements (“Four FCS,” 2005).  The sizes and 

capabilities of the vehicles generally increase in subsequent classes.  Platoons will 

operate Class I airframes.  Companies and battalions will operate the Class II and Class 

III aircraft, respectively.  Finally, brigades will operate the largest platform consisting of 

the Class IV UAV.  The unmanned aircraft will carry out a variety of missions from 

communication relays to target acquisition capabilities.  Table 4 provides the 

performance capabilities of the FCS UAVs. 

 

  Class I UAV Class II UAV Class III UAV Class IV UAV 
Unit Platoon Company Battalion Brigade 
Weight 5-10 lb 100-150 lb 300-500 lb >3,000 lb 
Endurance 50 min 2 hr 6 hr 6 hr 
Radius 8 km 16 km 40 km 75 km 
Transport manpackable   

(35 lb system) 
2 soldier 
remount 

2 man lift 100 m x 50 m 
recovery area 

Aircraft Raven 
(interim) 

TBD Shadow 
(interim) 

Fire Scout 

 
Table 4. FCS UAVs Characteristics and Performance Data (After “Unmanned 

Aircraft,” 2005). 
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1. Class I UAV 
 

Figure 4. Honeywell’s Miniature Air Vehicle (From “Ducted Fan,” 2005). 

 

The Raven described in Section A provides the Interim Force with a Class I UAV 

capability at the battalion level.  However, the Army plans to provide this capability 

down to platoon level.  Honeywell Aerospace is moving towards this goal by developing 

the backpack-size Miniature Air Vehicle (MAV) displayed in Figure 4 (“Ducted Fan,” 

2005).  In February 2006, Honeywell placed an order with AAI Corporation to produce 

55 MAVs through November 2006.  The platforms will be used in the Advanced Concept 

Technology Demonstration (ACTD) program of the Defense Advanced Research 

Projects Agency (DARPA) (“AAI,” 2006).  During the development phase, AAI will 

incorporate several new design features into the UAV. 

The Class I vehicles have been coined with the term “hover and stare” due to their 

ability to take off and land like a helicopter and provide day or night video surveillance as 

well as still imagery.  The design uses a ducted-fan technology that draws air in from the 

top and pushes it out from the bottom.  The system is capable of flying along at 50 mph at 

an operational altitude of 100 to 500 feet above the ground and a maximum altitude of 
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over 10,000 feet.  Current versions use gasoline and other heavy fuels common to U.S. 

Military ground vehicles and aircraft (“AAI,” 2006). 

Honeywell uses a flight management subsystem and micro-electrical mechanical 

systems (MEMS) to keep the device lightweight and provide autonomous flight features 

(“One Small,” 2005). The 13-inch diameter, 17-pound modular system provides small 

units with reconnaissance capabilities that soldiers are able to carry in an infantryman’s 

backpack (“AAI,” 2006).   

Another key reconnaissance feature of the platform is its "perch and stare" 

capability, when the MAV acts as an unattended ground sensor.  While in this mode, the 

vehicle can provide video surveillance and conserve fuel at the same time.  When the 

situation changes, the MAV can lift off and fly to another mission area (Crane, 2005). 

 

2. Class II UAV 
 

Figure 5. Class II – OAV II (From “Organic Air,” 2005). 

 

In July 2005, the Army’s Future Combat Systems program entered into the first 

phase of development for the Class II UAV system.  Serving as the Lead Systems 

Integrator (LSI) for the U.S. Army’s FCS program, Boeing (along with Science 

Applications International Corporation (SAIC)) initiated a contract with Piasecki Aircraft 
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Corporation to develop its version of the Class II system called the Air Scout.  Phase 1 is 

nearing its planned ten-month schedule, which has included an assessment of 

requirements and risk assessments of concepts for this class (“Four FCS,” 2005).  Up 

until this point, the FCS LSI and DARPA have been developing different technologies 

with the intent of narrowing down a final solution for the Class II UAV system.  DARPA 

has focused on ducted fan technology resulting in the Organic Air Vehicle II (OAV II) 

displayed in Figure 5.  Piasecki’s platform, the Air Scout, uses a non-ducted fan system 

and resembles a smaller version of the PA-59H Airgeep II (“Four FCS,” 2005). 

By middle of 2006, selected LSI and DARPA platforms will be assessed for their 

ability to meet FCS capability requirements.  This assessment will consist of a 24-month 

concept maturation phase.  The phase will conclude with a flight assessment in 2008.  At 

this point, the Class II UAV will enter a final System Design and Development (SDD) 

phase.  The Army, LSI, and DARPA will use a cost-value comparison to select the FCS 

integrated UAV system.  The first FCS system-of-systems testing will occur in 2010 with 

a projected follow-on fielding in 2014 (“Four FCS,” 2005). 

The Class II UAV is a unique system in that it will be vehicle mounted.  This will 

enhance the platform’s capability by allowing it to take off and land in unimproved areas 

as well as keeping its launch and recovery assets more mobile.  Mobility will be critical 

since the UAV will provide reconnaissance, surveillance, and target acquisition for 

beyond-line-of-sight and non-line-of-sight engagements at the company level.  The 

system will also boast autonomous control and man-in-the-loop cueing actions, freeing 

up soldiers to assess the enhanced imagery provided by the UAV (“Four FCS,” 2005). 
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3. Class III UAV 
 

Figure 6. Class III – Prospector (From Latimer, 2005). 

 

In October 2005, Teledyne Brown Engineering Inc., AAI Corp., and Piasecki 

Aircraft Corp. were awarded contracts for development on the Class III UAV system.  

The systems developed by these companies include the Prospector (Figure 6), Shadow III 

and the Air Guard, respectively (“Four FCS,” 2005). The phases of development for this 

FCS platform are similar to the Class II UAV roadmap.  Carried out in three phases, the 

process will involve the assessment of different technologies mounted on a variety of 

platforms.  While DARPA chose a ducted fan technology for the OAV II, it selected a 

rotorcraft technology for its Class III version.  LSI is investing in a gyrocopter and 

alternate fixed wing design for the system.  A final candidate will be selected and ready 

for testing and fielding in 2010 and 2014 respectively (“Four FCS,” 2005).   

While some of the designs for the Class III resemble the Class II platforms, they 

are larger and have greater payload capacities.  These UAVs will have extended 

endurance and be capable of carrying sensor packages suited for reconnaissance, 

communications relay, early warning, target acquisition and designation, and minefield 

detection to support battalion level operations (“Four FCS,” 2005).   
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4. Class IV UAV 
 

Figure 7. Fire Scout RQ-8A (From “Fire Scout,” 2004). 

 

The Army selected the Fire Scout RQ-8B as its Class IV UAV in 2003.  Northrop 

Grumman plans to deliver two prototypes in 2006 as part of an eight-year contract 

beginning in 2003 (“Unmanned Aircraft,” 2005; “Fire Scout,” 2004).  Selection for the 

Class IV platform came more quickly than the other FCS UAVs due to the Fire Scout’s 

successful developmental testing as the Fire Scout (RQ-8A) Vertical Take-Off and 

Landing (VTOL) Tactical UAV (VTUAV) program in the U.S. Navy (“Unmanned 

Aircraft,” 2005).  By 2005, the Fire Scout (Figure 7) had completed over 100 successful 

test flights incorporating Tactical Common Data Link (TCDL) operations, multiple 

sensor packages, and ground control systems (“Unmanned Aircraft,” 2005). 

Enhancements to the RQ-8B model include a four-blade rotor system versus the 

three-blade design on the RQ-8A, eight hours of operational time, and an increased 

payload weight of 600 pounds.  The system also has an operational radius of 150 nautical 

miles (“Unmanned Aircraft,” 2005; “Fire Scout,” 2004).  The four-blade rotor system 

allows the Fire Scout to carry several payloads at one time, increasing its operational 

capabilities at brigade level.  This will allow brigade commanders to take advantage of 

the General Atomics Lynx Synthetic Aperture Radar with ground Moving Target 



 20

Indicator (SAR/MTI), an Electro-Optical/Infrared/Laser Designator range finder 

(EO/IR/LD), and a communication relay package simultaneously (“Fire Scout,” 2004).   

The Fire Scout will be able to support precision strike missions.  The development 

program has resulted in the installation and testing of two four-packs of 2.75-inch rocket 

launchers designed to carry Advanced Precision Kill Weapon System laser-guided 

rockets and another laser-guided precision munition called Viper Strike (“Fire Scout,” 

2004).  Table 5 provides the performance capabilities of the RQ-8B Fire Scout. 

 

 RQ-8B   RQ-8B  
Length 22.9 ft Wing Span 27.5 ft 
Gross Weight 3,150 lb Payload Capacity 600 lb 
Fuel Capacity 1,288 lb Fuel Type JP-5/JP-8 
Engine Make Rolls Royce 250-

C20W 
Power 420 shp 

Data Link(s) LOS C2 
LOS Video 

Frequency Ku-band 
UHF 

C-band 
Endurance 6+ hr Max/Loiter Speed 125/0 kt 
Ceiling 20,000 ft Operating Radius 150 nm 
Launch vertical Landing hover 
Sensor EO/IR/LDRF Sensor Make FSI Brite     

Star II 
 

Table 5. Fire Scout RQ-8B Characteristics and Performance Data (After 
“Unmanned Aircraft,” 2005). 

 

E. GROUND CONTROL AND MISSION PAYLOADS 
Several controlling stations and devices make it feasible to launch, guide, and 

recover the unmanned vehicles.  They also allow for the collection and evaluation of 

information provided by the various mission payloads on the platforms.  This section 

provides a brief overview of the various ground control systems and mission payloads 

available for the UAVs described in this research.  
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1. Launch and Recovery Site (LRS) 
This thesis frequently refers to Launch and Recovery Sites versus a similar term, 

Launch and Recovery Stations.  The former describes the geographic location where 

UAVs leave for and return from mission assignments.  The latter refers to a mobile 

hardware component that assists flight control during the launch and recovery phases of 

the mission as the UAV takes-off and lands on the runway.  From here on, we refer to 

Launch and Recovery Sites as LRSs unless otherwise stated. 

ASC-U models the location of each LRS in the scenario with a grid coordinate 

system.  During the length of the scenario, the location of an LRS may change depending 

on the mission requirement of its owning unit.  LRSs vary in the type and number of 

UAVs that they can support.  Once launched, flight control for the unmanned platform 

passes to a Ground Control Station (GCS).  

 

2. Ground Control Station (GCS) 
Ground Control Stations house the electronic hardware to effectively command 

and control UAVs throughout the mission.  The station usually consists of a rectangular 

shelter mounted on a vehicle such as the HMMWV displayed in Figure 8.  The shelter 

contains pilot stations and monitors (Figure 9) in order to display video, still imagery, and 

sensor data provided by the mission payloads on the UAV. 
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Figure 8. Ground Control Station (From Farmer, 2001). 

 

While ASC-U is capable of modeling a wide range of GCS configurations, the 

simulation currently accounts for two types: the One System Ground Control Station 

(OSGCS), and the Dismounted Controller Device (DCD).  The GCSs are unique in their 

capability to control different types of UAVs, and have a maximum capacity of platforms 

that they are able to handle at any given time. 

AAI Corporation has produced the OSGCS for the Army’s Shadow TUAV 

program since 2001.  The system has logged over 50,000 hours during training and real-

world operations.  The One System GCS has controlled the Army Hunter platform, the 

Marine Corps’ Pioneer TUAV system, and the Warrior UAV during demonstration 

flights in 2005.  In October 2005, AAI Corp. was awarded a contract to produce the 

OSGCS system for the Warrior UAV.  Additionally, OSGCS meets NATO’s 

standardization agreement (STANAG 4586), making it the control station of choice 

among allied military forces (“Army Orders,” 2005). 
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Figure 9. Ground Control Station Interior (From Farmer, 2001). 

 

The Future Combat Systems LSI is investigating a multi-asset controller called 

the Dismounted Controller Device (DCD).  The soldier carries and operates the device 

while on dismounted patrols or riding in vehicles.  A key feature that currently separates 

the DCD from other control systems is its projected integration with the FCS family of 

systems.  Along with UAVs, requirements call for the device to control several systems 

to include, but not limited to:  Unmanned Ground Vehicles (UGVs), Manned Ground 

Vehicles (MGVs), Non-Line-of-Sight Launch Systems (NLOS-LS), Intelligent Munitions 

(IMS), and Unattended Ground Sensors (UGSs).  The DCD will go through many interim 

fieldings as new technologies are developed.  Human factors engineering will be essential 

to ensure that the device does not interfere with the soldiers’ other mission-critical tasks 

(“FCS Dismounted,” 2005).  

  

3. Remote Video Terminal (RVT) 
The Remote Video Terminal (RVT) is a scaled down version of a GCS 

specifically designed to receive telemetry and video data directly from the UAV.  The 

Army plans to field the terminals to command posts within battalions.  Intelligence 



 24

analysts and fire support officers within Tactical Operation Centers (TOC) can download 

captured images with telemetry data for further analysis and execution of calls for fire. 

A variant of the OSGCS called the One System Remote Video Terminal 

(OSRVT) is a mobile, manpackable terminal planned for the FCS family of systems.  

This device will feature an overlay containing icons for identified enemy units and 

vehicles in order to enhance target acquisition and identification (“Army Orders,” 2005). 

 

4. Mission Payloads 
Today’s UAVs carry a variety of payloads that enhance their mission capabilities.  

ASC-U simulates UAVs with several different payloads depending on their type and 

intended missions.  While generating the solution, ASC-U matches mission areas 

requiring service by a payload or set of payloads with available UAVs capable of 

carrying the required payload.  The mission payloads include: 

• Electro-Optical/Infrared (EO/IR) 

• Laser Rangefinder (LR) 

• Laser Designator (LD) 

• Synthetic Aperture Radar/Moving Target Indicator (SAR/MTI) 

• Foliage Penetrating (FOPEN) Radar 

• Light Detection and Ranging (LIDAR) Sensor Technology 

• Electronic Warfare (EW) 

• Global Positioning System (GPS) Designator 

• Chemical, Biological, Radiological, Nuclear, Explosive (CBRNE) 

• Weapon Systems 

• Mine Detection 

• Supply Delivery  

• Communication Relay 

• Meteorological Sensors 

• Signals Intelligence (SIGINT) 

• Communication Intelligence (COMINT) 

• Electronic Intelligence (ELINT) 
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 This chapter provided an overview of the different UAVs considered in the study.  

We also described several controlling stations and devices that make it feasible to launch, 

guide, and recover the unmanned vehicles.  In the next chapter, we introduce ASC-U’s 

approach to solving the dynamic routing problem involving UAVs.  
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III. SIMULATION DESCRIPTION 

A. UAV ALLOCATION PROBLEM 
The U.S. Army Training and Doctrine Command (TRADOC) Analysis Center 

(TRAC) and the Modeling, Virtual Environments, and Simulations Institute (MOVES) at 

the Naval Postgraduate School, Monterey, California developed the Assignment 

Scheduling Capability for UAVs (ASC-U) simulation tool to assist in the analysis of 

UAV requirements for the current and future force.  Figure 10 displays the study analysis 

process. The process has evolved within TRAC, separated into working groups 

responsible for components of this endeavor.  Analysts link tactical scenarios with UAV 

mission requirements and performance capabilities.  ASC-U uses the data to generate 

several measures of effectiveness (MOE) and a flight schedule for each scenario (Ahner, 

2005b).  

Figure 10. Study Analysis Process Diagram (After Ahner et al., 2006). 

 

ASC-U is a scheduling model that applies UAV resources against the schedule of 

mission requirements, given the battlefield conditions within a scenario.  ASC-U employs 

a discrete event simulation coupled with the optimization of a linear objective function.  

ScenarioScenarioScenarioOperational
or Tactical
Scenario

UAV Mission
Requirements

Screening
Tool

UAV Data

UAV MixUAV MixUAV MixUAV Mix

Operating Environment
METT-TC Factors
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The model is based on the framework developed by Havens (2002) for Dynamic 

Allocation of Fires and Sensors (DAFS) used to evaluate factors associated with 

networking assets in the Future Combat Systems. Given a scenario and a mix of UAVs, 

ASC-U determines a feasible schedule for UAV missions.  The simulation tool considers 

airframe capabilities, payloads, the locations and capacities of ground control station and 

launch and recovery sites, remote viewing terminals requirements, and communication 

footprints and capacities (Ahner et al., 2006). 

The scenario consists of a set of mission area locations and requirements, friendly 

unit locations, platform and payload characteristics, and ground control characteristics.  

Each mission area has a set of sensor, weapon, or communication requirements.  The 

mission areas do not move during the simulation.  Rather, each area has a start and end 

time associated with it.  As the simulation proceeds, mission areas “open” and “close” 

creating a time window in which UAVs with correct capabilities can service the mission.  

The number and type of UAVs constrain the solution, as do UAV performance 

capabilities such as air speed, operating time, transition time, and operating radius.  The 

number and capacities of ground control stations (GCSs) and launch and recovery sites 

(LRSs) also constrain the solution.  Additionally, the GCSs and LRSs move during the 

execution of the scenario (Ahner et al., 2006). 

ASC-U employs a Discrete Event Simulation (DES) model that simulates the 

operational environment of the UAVs.  The simulation is based on Simkit developed by 

Professor Arnold Buss at the Modeling, Virtual Environments, and Simulations Institute 

(MOVES) at the Naval Postgraduate School, Monterey, California.  Simkit is written in 

Java 2™ and is free to download at the Simkit website (Buss, 2006).  The simulation 

component within ASC-U accounts for the geographical dispersion of UAVs, ground 

control systems, and mission areas within the scenario.  The DES model simulates travel, 

loiter, and transition times.  The flight schedule takes into account the actual routing of 

UAVs over time and distance and results in a realistic and feasible product for each 

scenario.     

ASC-U blends optimization and simulation techniques to solve the complex 

assignment and scheduling problem presented by the scenarios in the Army’s UAV Mix 
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Analysis.  It handles the UAV routing problem with a “rolling algorithm.”  This results in 

an optimal assignment of each available UAV to at most one mission area during the 

specified time horizon at every optimization step.  This problem is simpler than the 

general UAV scheduling problem because at any given point in time it restricts the set of 

missions that will be considered, as well as the number of missions that can be assigned 

to a specific UAV.  While ASC-U is not guaranteed to provide an optimal solution, the 

“rolling algorithm” provides a systematic method of obtaining "good" schedules with a 

reasonable amount of computing effort.  The impacts of the time horizon and the 

optimization interval on solution quality are evaluated as part of this study. 

 

B. DYNAMIC PROGRAMMING APPROACH 
ASC-U uses an approximate dynamic programming approach known as a “rolling 

horizon” approach.  This method accounts for state transitions within the simulation 

rather than modeling them in an optimization formulation.  The approach is able to spiral 

in new problem characteristics such as UAV attrition and enable many measures of 

effectiveness to be collected and reported (Ahner, 2005b).   

ASC-U obtains an optimal solution to a simplified problem by 

assigning each available UAV to at most one mission that is currently available or will be 

available within a future time horizon.  The time horizon is unique to each type of UAV.  

The simulation derives a mission value for each assignment by considering the amount of 

time each UAV is on-station at a mission area and a value rate for sensor requirement 

within a mission area.  The time horizon is used to identify the missions that become 

available and does not influence the value of the service time. The simulation schedules 

UAVs to leave LRSs and arrive at mission areas in time to achieve the maximum value 

for servicing the area.  The process advances to the next optimization interval and 

assesses all UAVs not yet launched even if they were scheduled to launch in the previous 

optimization period.  Available UAVs are assigned to missions that do not yet have a 

UAV scheduled to that mission (Ahner, 2005a). 

Figure 11 displays the dynamic process of assigning two UAVs to five mission 

areas.  The optimization interval for the scenario is set at t simulation hours.  The arrows 
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at point 1 indicate the first (t0) and second (t1) optimization periods.  At time t0, two 

UAVs are available, UAV 1 and UAV 2.  ASC-U assesses available UAVs with GCS 

resources and available missions within the time horizon spanning t0 to t2.  Within this 

time horizon, missions 1, 2, and 3 are considered.  At point 2, the UAVs with appropriate 

sensor payloads are assigned to mission areas requiring service by such a payload.  For 

our example, assume that it is best to assign UAV 1 and UAV 2 to missions 1 and 2, 

respectively.  The simulation schedules UAV 1 to launch immediately, accounts for its 

flight time, and schedules its arrival at mission 1 as indicated by point 3.  Notice that 

UAV 2 is scheduled to launch shortly after t1 in order to arrive just in time to begin 

service at mission 2.  At each optimization interval, ASC-U considers all available 

UAVs, this includes aircraft that are scheduled but not launched.  At time t1, UAV 2 is 

scheduled but not launched, and is therefore “unassigned” and considered as an available 

UAV for the second optimization period as indicated at point 4.  Now, the time horizon 

includes missions 1, 2, 3, and 4.  UAV 2 achieves a higher assignment value for serving 

mission 4 then it did for mission 2 and reschedules to launch at point 5.  The simulation 

does not reassign UAVs while in flight.  In this manner, the simulation builds a flight 

schedule based on the optimal assignments achieved within the fixed time horizons 

(Ahner et al., 2006). 

Figure 11. Assignment Dynamics Example (After Ahner et al., 2006). 
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The simulation determines the mission value for flying a UAV to each mission 

using a valuation rate for sensor requirements on each mission area.  The sensor valuation 

rates depend on user-input.  This gives ASC-U the flexibility of use as an analytical tool 

for UAV mix studies as well as by operational commands that wish to prescribe priorities 

to different missions.  The UAV’s time-on-station for available missions is multiplied by 

the value rate in order to calculate the mission value for each UAV-mission pairing 

(Ahner et al., 2006). 

 Figure 12 displays the dynamic cueing and transition process conducted by ASC-

U in order to build the UAV flight schedule.  The Dynamic Simulation State Transition 

indicates the state of the system immediately prior to the next optimization interval.  For 

discussion, let the simulation state exist at time zero.  Airframes are located with their 

respective LRSs and dispersed according to the scenario’s initial battlespace 

configuration.  The simulation triggers its first optimization interval as we saw in Figure 

11.  The optimization sequence employs the Value of Potential Assignment Generator to 

calculate the value for all possible UAV-mission pairings that occur within the time 

horizons of each UAV by type.  The Generator considers movement, ranges, and 

capacities of the ground control systems and passes the data along with the mission 

values to the Optimization.  The Optimization makes assignments based on the maximum 

value obtained for each UAV-mission pairing and sends the results to the UAV 

Scheduler.  The UAV Scheduler determines launch times for assigned UAVs resulting in 

a flight schedule that accounts for travel and service times for each mission area.  The 

simulation proceeds to execute all ingress and egress flights as well as payload/sensor 

actions on assigned mission areas that occur before the next optimization interval.  This 

continues until the completion of the scenario (Ahner et al., 2006). 
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Figure 12. ASC-U Dynamic Cueing and Transitions (After Ahner et al., 2006). 
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Figure 13. Cartesian Coordinate Plot of Mission Areas and Ground Control Systems. 
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al., 2006).  The difficulty lies in the process of enumerating all of the UAV-mission 

assignments in order to develop the optimal schedule within a reasonable amount of time. 

The developers were also limited by time available to construct a tool required for 

the Army’s UAV Mix Analysis.  Once developed, however, ASC-U leveraged the ability 

to incorporate additional capabilities and enhancements.  The simulation is able to spiral 

in new problem characteristics and maintain flexibility in future studies (Ahner et al., 

2006). 

 

2. Limitations 
The following is a list of limitations from the ASC-U Users/Analyst Manual  

(Ahner et al., 2006): 

• ASC-U represents mission areas as a single Cartesian coordinate 
for the entire mission window.  If more than one UAV is required 
to perform a mission, the user must provide sensor requirements at 
two different/adjacent coordinates.  The use of single coordinates 
for mission areas account for the first order effects of assignments 
over space and time and GCS capacity and range constraints. 

• ASC-U does not account for tactics, techniques, and procedures 
concerning the employment of UAVs as they serve mission areas.   

• The UAV remains at the mission area until all sensor requirements 
that the UAV can perform end or the UAV must return to its LRS 
so that it does not exceed its operating time.  

• ASC-U does not model passing UAV control between two GCSs.  
A single GCS controls a UAV throughout its entire mission.  

• The user defines the contents of a sensor package for each UAV 
type prior to running the simulation.  Sensor packages cannot be 
reconfigured during the simulation. 

• The user provides LRS and GCS locations for particular times 
throughout the length of the scenario.  LRSs and GCSs travel at a 
uniform rate between the locations during the prescribed times. 
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3. Assumptions 
The following is a list of assumptions from the ASC-U Users/Analyst Manual.  

The authors note that some limitations may be considered as assumptions in order to 

highlight their effect on the solution (Ahner et al., 2006). 

• The overall mission value for the scenario is the sum of the sensor 
requirement values for served mission areas making up the 
solution.  

• UAV airspeed and operating radius are constant. 

• UAV control and data link requirements are satisfied. 

• Transition times between flights are constant. 

• Transition times represent recovery of UAVs and include 
swapping payloads. 

• The simulation does not consider attrition of or damage to UAVs.  
Additionally, maintenance requirements are not considered. 

• Army Airspace Command and Control (A2C2) requirements are 
satisfied. 

• The locations of the GCSs and LRSs locations are extracted from a 
Map Exercise (MAPEX) or a simulation running an approved 
scenario and are known throughout the scenario. 

• LRSs and GCSs travel at a uniform rate between locations from 
start to end times. 

• GCSs often operate in pairs, employing a “leap frog” movement 
where one controls UAVs from a forward position while the other 
GCS moves to its next position.  ASC-U replicates this method of 
employment by representing two GCSs by a single GCS that 
operates continuously with uniform movement between positions.  
This modeling technique allows for uninterrupted GCS capacity 
and control between positions.  

• LRSs are within range of at least one GCS for launch and recovery 
operations. 

• Terrain features do not influence UAV mission accomplishment.  
ASC-U does not model terrain features within the simulation. 

• Atmospheric conditions do not influence UAV mission 
accomplishment.  ASC-U does not model atmospheric conditions 
within the simulation. 
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D. ASC-U INPUT 
The mission requirements and UAV performance characteristics are represented 

in a Microsoft® Excel® spreadsheet.  The user/analyst loads the spreadsheet into ASC-U 

prior to each simulation run.  The Excel® file has several worksheets, each provide data 

for a specific component of the mission requirements.  Table 6 displays the name of the 

worksheets included in the Excel® input file.   

Our research explored the effects of twenty-six simulation and UAV performance 

factors on the mission value derived when allocating UAVs to mission areas.  The factors 

consisted of the following:  optimization interval, time horizons, air speed, operating 

time, operating radius, and transition time.  While the optimization interval is a single 

value for the entire scenario, the other five factors are unique for each type of UAV.  The 

MetaData worksheet stores the optimization interval and the AirFrame worksheet lists the 

UAV performance factors.  The following sections provide a description of the worksheet 

components used for the research conducted in this thesis.  For a complete description of 

the input worksheets used by ASC-U, see the current version of the ASC-U 

Users/Analyst Manual (Ahner et al., 2006). 

 

Worksheet Title 
 

MetaData 
Mission 
AirFrame 
MissionPackageTypes 
MissionPackageLocation 
GCSInput 
LRSInput 
RVTInput 
SuperMissionData 

 
Table 6. ASC-U Input Worksheets (From Ahner et al., 2006). 
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1. Meta Data Worksheet 
The MetaData worksheet contains three elements: scenario length, optimization 

interval, and report interval (Ahner et al., 2006).  We investigated the optimization 

interval in this thesis.  

• Scenario length indicates the length of the scenario in simulation 
hours. (Defaults to 360.0, if MetaData worksheet is not present.) 

• Optimization interval is the time (simulation hours) between 
optimizations that derive the UAV allocations at that moment in 
time. (Optional: Defaults to 1.0) 

• Report interval indicates the phases of the scenario for which 
measures of performance will be reported. Measures of 
performance for the overall scenario length are also provided in 
addition to these interval reports. (Optional: Defaults to 4.0) 

 

2. Air Frame Worksheet 
The AirFrame Worksheet contains all performance characteristics for each UAV. 

Each row in the worksheet represents one UAV.  We varied the inputs at each row under 

the following columns:  transition time, max speed (air speed), operating radius, 

operating time, and time horizon.  The following list describes the column headings for 

the AirFrame worksheet (Ahner et al., 2006): 

• Type is the class of UAV and may be used to ensure that a proper 
LRS is used for take off and landing. 

• Unit is the owning military unit of the UAV listed on the same row 
and under the column Type. 

• Compatible GCS indicates the type of GCS from the GCS 
Worksheet that is able to control this UAV. (Not used in the 
current version, but should not be deleted.) 

• Starting LRS is the name from the LRSInput Worksheet of the 
LRS from which the UAV originates. 

• Ending LRS is the name from the LRSInput Worksheet of the 
LRS to which the UAV lands. (Should be the same as the Starting 
LRS.) 

• Transition time is the time, upon landing, that is required before 
the UAV is available to launch. 

• Max speed is the travel rate of the UAV between locations. 
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• Operating radius is the max distance the UAV can be from a 
controlling GCS for effective control. 

• Name is a unique name for the UAV. 

• StartAvail is the time the UAV is initially available for launch, 
usually an H-hour. 

• EndAvail is the time the UAV is last available in the scenario. 

• Operating time is the maximum time the UAV may be away from 
an LRS. 

• Time horizon is the time window used in the rolling algorithm of 
the optimization. Time horizon is usually 1 to 1.5 times the 
operating time plus transition time. This value is critical to 
determining what missions will be considered in the look-ahead 
time window to launch a UAV if GCS capacity is available. 
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E. ASC-U OUTPUT 
ASC-U saves the simulation results as output reports in a Microsoft® Access® 

database.  The output reports are organized into fourteen database tables.  Table 7 

provides a description for each report.  For this thesis, we required the data contained in 

the Coverage and CoverageByType tables. 

  

Table Name Description 
Coverage The amount of time each mission is covered by a UAV 

CoverageByType 
The amount of time each mission is covered by each 
different type of UAV 

CoverageDelay 
The delay from the time a mission opens until it is first 
covered by a UAV 

GCSLoadOverTime 
The time average number of UAVs using each GCS in each 
time period 

GCSUtilization The time average load on each GCS 
MissionAssignment A schedule of which UAV is covering which missions 

MissionPackageUtilization 
The time average utilization rate of each type of 
MissionPackage at each LRS 

RunInformation 
Information about the DAFS version and data used to create 
the output tables 

RVTCoverage Not currently used 
Schedule A schedule of UAV sorties 
TerseRVTCoverage A summary of the coverage of each mission by each RVT 

UAVReadyTimeOverTime 
For each UAV, the amount of time it is ready for launch in 
each time period 

UAVUtilization UAV utilization data 

UAVUtilizationOverTime 
For each UAV, the proportion of ready time that the UAV 
was airborne in each time period 

 
Table 7. Measures of Performance Tables (From Ahner et al., 2006). 

 

This chapter introduced the UAV allocation problem and the ASC-U simulation 

tool.  We limited our discussion to the components of ASC-U that we used in our 

research.  We also point out that ASC-U is in continuous development.  During our 

research, the developers added several new functionalities involving sensor packages, 

UAV characteristics, and mission areas.  We used ASC-U version 1.3.0 modified on 

April 13 10:41:11 PDT 2006 for our study.  
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IV. ANALYSIS METHODOLOGY 

This chapter discusses the analysis methodology employed in our research.  We 

describe the selection of factors included in our experiment, the development of design 

points using Nearly Orthogonal Latin Hypercubes (NOLH), and the statistical software 

selected for the analysis.   

 

A. MEASURE OF EFFECTIVENESS (MOE) 
The ASC-U simulation supports the generation of a number of MOEs,  including,  

percent mission coverage, percent mission type coverage, percent mission coverage by 

UAV type, UAV utilization, mission package utilization, coverage delay, percent AUTL 

(Army Universal Task List) coverage, Remote Viewing Station (RVT) coverage, and 

Ground Control Station (GCS) utilization.  Other MOEs provide more detail that are 

summarized by these aggregate MOEs.  An additional MOE supported by ASC-U is a 

term within the simulation-optimization process called mission value.  Generated during 

the allocation of UAVs to mission areas, mission value is a quantifiable measurement that 

captures a UAVs service to a mission area.  Since mission value is representative of the 

percent mission coverage and based on the mission payload, UAV type, and service time 

of a mission area, we felt that it would provide an appropriate measure into the overall 

performance of the simulation and quality of the schedule it produces.   

 

B. DESIGN OF EXPERIMENT 
The research conducted in this thesis takes advantage of experimental design 

techniques based on statistical theory and developed to assist researchers in the analysis 

of computer simulations (Kleijnen et al., 2005).  The primary goal of experimental design 

is to assess how changes to input parameters (factors) affect the results (responses).  We 

applied these techniques with runs of the ASC-U simulation tool in order to answer the 

research questions and provide insights into the model’s development and application 

across a robust set of future mission scenarios. 
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The origins of Design of Experiments (DOE) have their roots in agricultural 

research in the early 1900s and have since captured the attention of several industries 

(Kleijnen, 2004).  Original DOEs proved useful where only a few factors were 

considered in the investigation of the process in question.  Recently, this “parallel 

experimentation” methodology has found its way into the pharmaceutical industry where 

process chemists are looking to enhance drug design and development (Henry, 2002).  

With the advent of faster computing power and increased appreciation for simulation 

applications, research analysts have begun to expand the application of DOE to 

simulations analysis (Kleijnen et al., 2005; Kelton, 2001). 

 

1. Factor Selection 
ASC-U relies on several types of input factors to model the scenario and process 

the allocation of UAVs to mission areas requiring different mission payloads.  We 

selected factors that fell into two categories:  UAV characteristics and performance 

capabilities, and optimization parameters. 

The first set of factors we considered included the following UAV characteristics 

and performance capabilities:  UAV type, sensor package, operating time, air speed, 

operating radius, and transition time.  The UAVs considered at the time of the study 

included the Extend Range Multipurpose (ERMP) UAV, and the Future Force UAVs 

classified as Class I, II, III, and IV platforms.  The base scenario used single values for 

operating time, air speed, operating radius, and transition times based on current and 

future projected UAV capabilities (“Unmanned Aircraft,” 2005).   

The second set of factors implemented within ASC-U involves the optimization.  

The factors include the optimization interval and the time horizon used to assess and 

assign UAVs to available mission areas.  The optimization interval is set at a single value 

for the entire simulation run.  The time horizon is used to identify the missions that 

become available for each type of UAV.  This length of time can be viewed as a  

“planning window” that is specific to each type of UAV and is based on its operational 

capabilities.  The simulation considers this future time horizon when allocating UAVs to 

mission areas at each optimization interval.   
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We based our final selection of the factors explored in the study on their 

relationship to the ASC-U solution and the research questions.  The fact that ASC-U 

treats the assignment of UAVs as a dynamic routing problem indicated that influential 

factors would most likely consist of the platforms’ characteristics and performance 

capabilities.  This led to the selection of the following four factors for each type of UAV:  

operating time, air speed, operating radius, and transition time.  Additionally, we selected 

the time horizon for each UAV based on its incorporation in the solution formulation and 

its potential impact on UAV assignments.   

We selected the optimization interval as an additional factor.  The optimization 

interval is a characteristic of ASC-U’s optimization, rather than that of the platforms or 

the scenario.  As the simulation proceeds, ASC-U queries the status of all UAVs and 

mission areas in order to optimize the allocation of UAVs to mission areas within their 

respective time horizons.  The simulation tool uses the optimization interval to determine 

how often this query process occurs.  An interval of 10, for example, conducts an 

optimization sequence every ten simulation hours.  Our initial expectation was that the 

smaller the interval, the higher the overall mission value assigned to the scenario’s 

schedule. 

Our assessment of appropriate design factors led to the selection of 26 factors 

consisting of five factors for each UAV type and the simulation’s optimization interval 

parameter.  Table 8 displays the factors along with their base scenario values and the 

ranges used in the DOE.  The ranges for the UAV factors were developed by adding and 

subtracting 20% of the base value.  We set the range for the optimization interval 

between one and ten simulation hours. 
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DOE Ranges UAV 
Types Factors Factor 

Name 
Base Scenario 

Value Low High 
ERMP         

Time Horizon (hr) EHoriz 36 28.8 43.2 
Operating Time (hr) EOprT 36 28.8 43.2 
Air Speed (km/hr) ESpeed 241 192.8 289.2 
Operating Radius (km) ERadius 500 400 600 

  
  
  
  
  Transition Time (hr) ETrans 0.5 0.40 0.60 
Class I         

Time Horizon (hr) 1Horiz 0.83 0.664 0.996 
Operating Time (hr) 1OprT 0.83 0.664 0.996 
Air Speed (km/hr) 1Speed 93 74.4 111.6 
Operating Radius (km) 1Radius 8 6.40 9.60 

  
  
  
  
  Transition Time (hr) 1Trans 0.16 0.128 0.192 
Class II         

Time Horizon (hr) 2Horiz 2 1.60 2.40 
Operating Time (hr) 2OprT 2 1.60 2.40 
Air Speed (km/hr) 2Speed 93 74.4 111.6 
Operating Radius (km) 2Radius 16 12.8 19.2 

  
  
  
  
  Transition Time (hr) 2Trans 0.24 0.192 0.288 
Class III       

Time Horizon (hr) 3Horiz 6 4.80 7.20 
Operating Time (hr) 3OprT 6 4.80 7.20 
Air Speed (km/hr) 3Speed 222 177.6 266.4 
Operating Radius (km) 3Radius 40 32.0 48.0 

  
  
  
  
  Transition Time (hr) 3Trans 1 0.80 1.20 
Class IV       

Time Horizon (hr) 4Horiz 6 4.80 7.20 
Operating Time (hr) 4OprT 6 4.80 7.20 
Air Speed (km/hr) 4Speed 231 184.8 277.2 
Operating Radius (km) 4Radius 75 60.0 90.0 

  
  
  
  
  Transition Time (hr) 4Trans 0.5 0.40 0.60 

Factor Factor 
Name 

Base Scenario 
Value Low High ASC-U 

Parameter Optimization Interval OptInt 1 1 10 

 

Table 8. Factors Based on UAV Performance Capabilities and their Ranges. 
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2. Nearly Orthogonal Latin Hypercube (NOLH) 
Once we selected the input factors, the next step was deciding how to assess the 

impact of the various levels for each factor against the MOEs generated by ASC-U.  

Without knowledge of experimental designs proposed by Kleijnen et al. (2005), an 

analyst may decide to start with only two or three factors set at the low and high levels.  

Using two levels for three factors would create eight design points.  In order to gain a 

better understanding of the response surface, we would like to increase the number of 

factors and expand the levels for each.   

Consider a full factorial experiment with our factors and three levels (low, middle, 

high) in order to identify non-linear relationships within the model.  This would result in 

326 (2.54 x 1012) design points.  Since ASC-U is a deterministic simulation, only one run 

per design point would be required.  Nevertheless, at approximately three hours per run, 

even with 1000 computers simultaneously executing a different design, it would take 

nearly nine-thousand centuries to acquire the data set.  Fortunately, there are effective 

alternatives to using a full factorial design. 

We selected the space-filling design of Nearly Orthogonal Latin Hypercubes 

(NOLH) to provide an exploration of the outer and interior regions of the response 

surface.  NOLH designs allow the analyst to develop a comprehensive set of explanatory 

variables represented in the model (Cioppa, 2002).  Instead of being restricted to two or 

three levels, the analyst can create a design that uses multiple levels or even a continuous 

range of values for each factor.  This facilitates the identification of non-linearities within 

the response surface (Brown, 2000).  

In addition to good space-filling properties, orthogonality is another desirable 

property of designs.  Orthogonal designs have no linear relationship between the 

regressors (Montgomery, Peck, & Vining, 2001).  The NOLH technique minimizes the 

correlation between factor columns, creating a nearly orthogonal design matrix.  We can 

examine the off-diagonal elements within the correlation matrix of the design in order to 

measure the level of orthogonality.  The spreadsheet design tool described below has 

several features that guard against multicollinearity and produce a robust space-filling 

design. 
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Using the NOLHdesigns_v4.xls spreadsheet developed by Professor Susan M. 

Sanchez, we generated 257 design points consisting of 26 factors (Sanchez, 2005).  The 

spreadsheet in Figure 14 consists of worksheets that create designs for a specific number 

of factors.  Since our experiment called for 26 factors, we used the worksheet that creates 

a nearly orthogonal design for 22-29 factors.  The spreadsheet employs the algorithm 

described by Cioppa (2002) where the maximum number of factors examined in a Latin 

hypercube is 
1

2
m

m
−⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

 and m is an integer greater than 1.  Solving for m using 29 as 

the number of factors gives m = 8.  The number of n design points required is given by 

2 1mn = +  and results in 257 (Cioppa, 2002). 

 

Figure 14. Nearly Orthogonal Latin Hypercube (NOLH) Design Spreadsheet. 
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Our final design consisted of a 257 x 26 matrix with the largest correlation of 

0.0816.  Figure 15 provides the two-dimensional projections for the optimization interval 

and ERMP factors, which display the space-filling properties of the design.  We created 

Microsoft® Visual Basic® macros to generate 257 scenario templates in Excel® and 

transfer the respective design points to each one.  At this point, we were ready to begin 

our runs.  

  

Figure 15. Scatterplot Matrix for Optimization Interval and ERMP Factors. 

 

3. Computing Resources 
Simulation analysis requires scenario productions runs.  Simulations involving 

stochastic processes require multiple runs per scenario.  For example, a simulation with 

257 design points may require 50 runs each.  This amounts to 12,850 runs for a single 

data set.  Researchers often look to supercomputing clusters to support their simulation 
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requirements.  Two organizations that facilitate data farming in this way are the Maui 

High-Performance Computing Center (MHPCC) at the University of Hawaii and the 

MITRE Corporation in Woodbridge, VA (Wolf, 2003; Hakola, 2004).  A script is usually 

created to transfer each row of the design point to a single simulation run.  Our computer 

resource needs were different in two ways. 

First, ASC-U is a deterministic simulation requiring only one run per design 

point.  This limited the number of runs that we needed to 257.  Second, ASC-U uses a 

graphic user interface (GUI) to load each design point and initiate a run.  Once the 

simulation is complete, the analyst saves the results to a Microsoft® Access® database.  

While we would have liked to create a script to automate the run-initiation process, we 

found that, based on time constraints, it was easier to initiate each run manually for our 

study.  At approximately three hours per run, we require over 700 hours of processing 

time.  We used the computer labs in the Operations Research Department, Naval 

Postgraduate School, Monterey, CA to complete our simulation runs.  We employed 

approximately 60 computers simultaneously to load and initiate each run.  The computing 

resources consisted of Dell 2.80 GHz Pentium 4 Computers with 1.00 GB RAM running 

Microsoft® Windows® XP Professional. 

 

C. ANALYSIS OF THE DATA 
This section describes the data consolidation process and statistical software 

package used in the study.  We were interested in ways to facilitate our current as well as 

future studies involving the ASC-U simulation tool.  Efforts were made to develop a 

DOE methodology that could be integrated with ASC-U.  Additionally, we desired a 

user-friendly data analysis package that facilitated analysis and provided a graphical 

display of intermediate and final results. 

 

1. Data Consolidation 

ASC-U provides the ability to write the results in several different database 

structures.  Since the results from trial runs were too large for Excel® to handle, we saved 

the outputs to Microsoft® Access® databases.  We generated 257 databases after 
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completing the runs.  Each database was approximately 30 megabytes in size, with 14 

tables comprised of MOE data and a UAV flight schedule.  Our task was to extract the 

desired MOEs and consolidate the results with the original design matrix. 

We determined that it was beneficial to extract the percent mission type coverage, 

percent mission coverage by UAV type, and the mission value generated for each run.  

The data required to calculate these MOEs reside in two tables:  Coverage and 

CoverageByType.  Since the Coverage table consisted of 21,360 rows, we converted the 

table to Excel® format.  We created Visual Basic® macros to calculate the percent 

mission type coverage for all mission payloads and the mission value for each design 

point.  Using the same set of macros, we extracted the MOEs and consolidated them with 

the original design spreadsheet. 

The CoverageByType consists of 106,800 rows and is therefore too large to save 

as an Excel® file.  A short application was created in Java™ using the Java Database 

Connectivity (JDBC) to access the CoverageByType table within Microsoft® Access®, 

calculate the percent mission coverage by UAV type, and output the results as a comma 

separated value (.csv) file.  The Java™ code is displayed in Appendix E.  The results were 

merged with the design matrix, creating a row for each design point with 20 additional 

columns for the MOEs. 

 

2. JMP Statistical Discovery Software™ 
In order to facilitate our analysis, we selected JMP Statistical Discovery 

Software™ from SAS.  JMP Software provides a stand-alone analytical tool for DOE 

development, implementation, visualization and analysis.  The research analyst can learn 

the fundamentals within JMP in order to input, manipulate, and begin analysis of their 

data within a few hours.  JMP provides the following capabilities that were specifically 

useful during our research: 

• Spreadsheet environment for entering, editing, and displaying data sets. 

• Interactive graphs and reports that assist in the exploration of the data. 

• Journaling tools that record the investigative process for follow-on review. 

  



 50

In closing, a space-filling design coupled with a robust software package assisted 

our exploration of the response surface represented by the multiple Measures of 

Effectiveness (MOE) depicted in the solution of ASC-U. 
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V. DATA ANALYSIS 

This chapter describes the analysis of our data.  Section A provides an overview 

of the techniques used during the analysis.  In Section B, we provide an assessment of our 

first design and the data characteristics that led to the development of a new design.  We 

continue with initial observations of the data generated by the new design using 

histograms and a scatter plot of the mission value by design points.    Section C provides 

an in-depth analysis of the regression model using mission value as the response variable.  

Section D develops an alternate regression model using percent mission coverage as the 

response variable.  In Section E, we describe interesting observations by comparing the 

measures of effectiveness used in our two models and provide an interpretation of our 

model coefficients.   

 

A. MULTIPLE REGRESSION ANALYSIS 
Multiple regression analysis creates a mathematical description of the relationship 

between a dependent variable (y) and several independent variables (x) (Devore, 2004).  

We call the dependent variable the response and the independent variables regressors.  

The technique involves predicting (fitting) the response variable using a linear 

combination of the regressors.  The linear model is described in two forms, the true 

model and the estimated model.  The true model is a representation of the actual observed 

values.  The estimated model represents the predicted or expected values.  We enumerate 

the regressors as x1, x2, …, xk, where k represents the number of regressors (k  >= 2).  The 

model also includes parameters β and ε.  The parameters β1, β1, …, βk  are coefficients that 

represent the amount the response variable changes when the corresponding regressor 

changes by one unit.  The intercept, β0, is a constant where the regression line intercepts 

the y-axis.  Error in the true model is represented by ε.  It is the difference between the 

actual value and its predicted value.  In the estimated model, the difference is called a 

residual (Sall, Creighton, & Lehman, 2005).  Figure 16 displays the components of a 

general linear model with two terms. 
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Figure 16. Components of a General Linear Model (After Sall et al., 2005). 

 

Figure 16 represents a first-order model.  However, variations of the regression 

model may also include second-order terms (polynomial) to investigate curvilinear 

effects, cross-product terms (factorial) to investigate interaction effects, and full quadratic 

models that combine both second-order and factorial terms in one equation.  Creating full 

quadratic models during regression analysis may result in a robust model that is able to 

explain a larger portion of the variation in the response variable compared to a simple 

first-order model.  Figure 17 displays four multiple regression models using two 

independent variables. 

 

 

Figure 17. Multiple Regression Models. 
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To conduct meaningful regression analysis, we must verify certain assumptions 

about the data set.  First, there must be at least an approximate linear relationship 

between the response variable and the regressors.  Analysts check this relationship by 

overlaying a graph of the regression equation on the scatter plot of the data (Devore, 

2004).  Next, the residuals must have a zero mean and constant variance.  Finally, the 

residuals must be normally distributed.  Analysts can use histograms and Normal quantile 

plots to check the Normality assumption.  JMP uses the Shapiro-Wilk test (W-statistic) to 

test Normality when  n <= 2000 (Sall et al., 2005).  

The JMP statistical software package reports the t-ratio and corresponding          

P-value for each regressor in the model.  JMP uses the t-ratio to test the contribution of 

each regressor.  The procedure tests the significance of an individual regression 

coefficient, βj.  The null hypothesis H0: βj = 0 is rejected over the alternate hypothesis   

H1: βj ≠ 0 if / 2, 1o n kt tα − −> .  If the alternate hypothesis is accepted, then we conclude that 

the regressor xj is significant given the other regressors remain in the model. 

(Montgomery et al., 2001)  The t-statistic is calculated using the standard error for the 

slope, se( îβ ): 

ˆ
ˆ( )
i

o
i

t
se
β
β

=  

Multiple regression analysis allows the analyst to identify a set of regressors that 

explain a proportion of the variance in the response variable.  The level at which the 

regressors explain the variance of the model is established with a significance test of R-

square (R2).  R-square is calculated using the sum of squared residuals (SSE) and the total 

sum of squares (SST): 

  2 1 SSER
SST

= −  

The analyst can use an Adjusted R-square ( 2
aR ) to compare models with different 

numbers of parameters (k).  The Adjusted R-square is calculated using the mean squared 

error [ MSE =  SSE/(n-(k+1)) ] and the mean square of treatments [ MST = SST/(n-1) ]: 
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2 1a
MSER
MST

= −  

 

Another method used to compare regression models is called the F test.  The 

analyst builds two models consisting of different numbers of regressor variables.  The full 

model contains more regressors (k) than the reduced model with l regressors.  Since the 

full model consists of additional regressors, it should fit the data as well or better than the 

reduced model.  The F test uses the sum of squared residuals for the full model (SSEk) 

and the reduced model (SSEl) to calculate the value of the f-statistic.  The full model is 

rejected over the reduced model if , , ( 1)k l n kf Fα − − +≥  (Devore, 2004).  

  

( ) /( )
/[ ( 1)]

l k

k

SSE SSE k lf
SSE n k

− −
=

− +
 

 

We used stepwise regression to assist in model development due to the number of 

regressors in our study.  JMP allows the analyst to select between backward elimination, 

forward selection and mixed stepwise regression.  We selected mixed stepwise regression 

for our analysis.  The procedure begins with forward selection by adding variables one at 

a time based on the one that generates the largest absolute t-ratio when it enters the 

model.  After adding a regressor to the model, it examines the previously entered 

variables for the smallest absolute t-ratio.  JMP compares the corresponding P-value for 

the candidate t-ratios to user-defined probabilities to enter or leave the model, and 

processes them respectively.  The process stops when variables are no longer significant 

(Sall et al., 2005). 
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B. INITIAL OBSERVATIONS 

Our first design consisted of 26 factors resulting in a 257 x 26 design matrix.  In 

this design, the optimization interval contained ten levels from one to ten simulation 

hours.  Prior to running our design, we predicted that the optimization interval would 

have a large impact on the overall mission value and mission percent coverage.  We 

believed that the smaller the interval, the larger the mission value generated with all other 

factors remaining constant.  We based our prediction on the assignment process within 

ASC-U.  The more frequently ASC-U initiates an optimization sequence, the less it 

misses “windows of opportunity” for missions that become available.  Thus, the 

simulation is able to reallocate UAVs to gain a higher mission value and increase the 

percent mission coverage. However, because shorter optimization intervals require longer 

ASC-U run times, we were interested in finding out how rapidly the solution degraded 

when the optimization interval increased. 

We started our analysis by fitting the main effects using the stepwise regression 

feature in JMP.  The direction of the regression was set to “mixed” with “combined” 

rules so that the regressors that entered into the model on previous steps are reassessed in 

subsequent steps.  We set the probability to enter and leave at 0.050 and 0.100, 

respectively.  Figure 18 displays the actual value by predicted plot and summary statistics 

of the results.   

Figure 18. Actual Value by Predicted Plot and Statistics for Initial DOE. 
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 The stepwise process selected eleven factors:  OptInt, EHoriz, EOprT, 1OprT, 

2Horiz, 2OprT, 3OprT, 3Radius, 3Trans, 4OprT, and 4Radius.  We continued with a 

standard least squares regression on the eleven main effects.   

To our surprise, a simple regression of 11 main effects explained 98% of the 

variance within the model.  We were eager to investigate the significance of the factors 

using the visual screening tool provided by JMP called the Prediction Profiler.  The 

Prediction Profiler allows the analyst to explore the effect on the predicted response 

variable by changing one or more factor settings (Sall et al., 2005).  The importance of 

the optimization interval was evident upon viewing the plots displayed in Figure 19. 

 

Figure 19. Prediction Profiler for Initial DOE. 

 

In Figure 19, we see that the optimization interval dominates the other factors 

with its effect on the response.  While this initial finding confirmed our earlier prediction, 

we quickly realized that the optimization interval’s strong effect was going to limit our 

ability to assess the other factors’ influence on the model.  Prior to considering alternate 

options for our analysis, we ran a simple regression using the optimization interval as the 

only regressor in order to find out how much of the model it explained.  Figure 20 

displays the results of the one-term model.  The regressor accounted for 94% of the 

variance within the model. 
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Figure 20. Actual by Predicted Mission Value Plot for Initial DOE.     

 

Not only does optimization interval explain “almost all” of the variation, but the 

mission values for larger optimization intervals show a reduction in the overall mission 

value by nearly 50%.  This is clearly unacceptable.  The practical implication is that for 

this scenario, ASC-U should be used with a short optimization interval in order to obtain 

a good solution, even though this requires more computing time.  

The dominant influence of the optimization interval led us to explore other 

options for our analysis.  Our goal was to eliminate the presence of the interval’s effect 

and examine the other twenty-five factors.  We looked at our design of experiment to see 

how many runs consisted of the optimization interval set to one.  There were fifteen 

instances, not enough for the number of predictor variables in our study.  Tabachnick and 

Fidell (1989) propose the rule of thumb for testing R-square using N >= 50 + 8m, where 

N = number of observations and m = number of predictors.  Since we were interested in 

the effects of the twenty-five UAV factors, we needed a sample size nearly the size of our 

original design.  Otherwise, a situation where m >= N results in a trivial solution of       

R-square = 1.0. 
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We generated a new design of experiment using the twenty-five UAV factors.  

We concatenated the 15 runs from the original design with the 257 new runs.  The result 

was a maximum pairwise correlation of 0.0372, providing nearly orthogonal properties 

for our design (Cioppa, 2002).  We generated the new data set and combined the results 

with the original fifteen runs, giving us 272 observations for our analysis. 

Once we completed the runs for the new design, we computed the mission values 

and twenty MOEs.  We consolidated the results with their corresponding design points 

using the methodology described in Chapter IV.  Our initial assessment consisted of 

reviewing the distributions of the MOEs as displayed in Figures 21-23.  Figure 21 

displays the distribution and summary statistics of the mission value for all 272 designs.  

The base scenario design generated a mission value of 4224154, slightly above the mean 

of 4215522.  Many of the MOEs are approximated by a normal distribution, with the base 

scenario falling in the center of the data.  However, several MOEs present a bimodal 

distribution that warrant further investigation. 

 

Figure 21. Distribution and Summary Statistics of Mission Value. 
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Figure 22. Distribution and Summary Statistics for MOEs. 
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Figure 23. Distribution and Summary Statistics for MOEs. 
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Of particular interest are the percent coverage distributions for the following 

payloads:  meteorological (Meteo), communication intelligence (COMINT), foliage 

penetrating radar/light detection and ranging (FOPEN/LIDAR), and supply delivery 

(Supply).  We investigated the significant individual factors that influence the behavior of 

the first two MOEs forming bimodal distributions.  We identify the factor(s) that tend to 

cause the MOEs to concentrate into separate regions.  Our preliminary findings for Meteo 

and COMINT are displayed in Appendices C and D, respectively.  The last two MOEs 

have little to no variation in their percent coverage.  FOPEN/LIDAR predominantly 

receives a percent coverage of 46.4%, whereas the solution does not allocate UAVs to 

supply delivery missions.  We investigate FOPEN/LIDAR coverage and supply delivery 

missions in Section E of this chapter. 

After reviewing the histograms for each MOE, we generated the scatterplot for 

mission value in Figure 24.  We observed one design point, 140, falling below 3.13 

standard deviations from the mean.  Additionally, we were particularly interested in the 

five extreme values located at the top of the plot achieving high overall mission values.  

In the next section, we discuss the regression analysis that investigates these observations 

further.  

 

Figure 24. Scatterplot of Mission Value for Design Points. 
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C. MISSION VALUE MODEL 

This section provides an analysis of the regression model using mission value as 

the response variable.  We were interested in the effects that the UAV characteristics and 

performance capabilities had on the ASC-U generated mission value for each scenario.   

 

1. Main Effects Model 
We started our analysis with a mixed stepwise regression on the main effects 

using a probability to enter and leave of 0.050 and 0.100 respectively.  The stepwise 

process selected 12 of the 25 regressors:  EHoriz, EOprT, 1Horiz, 2OprT, 1Radius, 

2Radius, 3Horiz, 3OprT, 3Radius, 4Horiz, 4OprT, and 4Radius.  We performed a 

standard least squares regression on the selection.  Figure 25 displays the actual value by 

predicted plot for the regression.  The model generated an R-square value of 0.8895.  

Eight of the twelve factors were significant with a Prob>|t| <0.0001.  Three more were 

significant at 0.0061 or less.  One factor, 2Radius, generated a Prob>|t| of 0.0265. 

  

Figure 25. Actual by Predicted Mission Value Plot for Main Effects Model. 
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2. First Order Model with Interactions 

We would like to increase the explanation of the variance within the model and at 

the same time keep the significant factors to a minimum.  In order to establish a range of 

R-square values, identify significant factors, and further investigate trends within the 

data, we generated a first order model with interactions.  We started with all main effects.  

Next, we ran the macro within JMP to add effects with factorial to degree set at 2.  We 

performed a stepwise regression followed by least squares regression as described above.   

Figure 26 displays the actual value by predicted plot for the regression.  Again, 

we notice a high level of stability between the predicted plot and the actual data.  The 

stepwise process selected 20 main effects and 24 interaction terms.  The model generated 

an R-square value of 0.9557.  Nineteen of the factors were significant with a Prob>|t| 

<0.0001.  Ten of the factors generated a Prob>|t| greater than 0.0100.  Interestingly, each 

UAV type presented four of five factors within the model.  Air speed was not selected for 

ERMP, Class II, and Class III UAVs.  Transition time was not selected for Class I and 

Class II UAVs.  We will investigate the selection of significant factors as we reduce the 

number of regressors to develop the final model. 

 

Figure 26. Actual by Predicted Mission Value Plot for First Order with Interactions. 
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3. Full Quadratic Model 

At this stage, we combined our model forms to create a full quadratic model with 

main effect, polynomial, and interaction terms.  We employed the same techniques as 

described above by using JMP to add main effects and interaction terms.  JMP also 

provides a macro to add polynomial terms to a user-defined degree setting.  We selected 

polynomial to degree set at 2.  Prior to selecting stepwise regression on our model effects, 

we changed the probability to leave from 0.0100 to 0.0500.  This was done in order to 

eliminate excessive terms that had a Prob>|t| greater than 0.0100.  Our first order 

interaction model had ten such effects that did not significantly explain the model. 

Figure 27 displays the actual value by predicted plot for the full quadratic model.  

The stepwise process selected 35 significant factors consisting of 19 main, 11 interaction, 

and 5 second-order terms.  The model generated an R-square value of 0.9610.  Sixteen of 

the factors were significant with a Prob>|t| <0.0001.  Fourteen of the factors were 

significant at 0.0080 or less.  Five of the factors generated a Prob>|t| greater than 0.0100, 

half the amount found in the first order interaction model.   

 

 

 

 

 

 

 

 

 

 

Figure 27. Actual by Predicted Mission Value Plot for Full Quadratic Model. 
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4. Final Model 

We evaluated the step history generated in the stepwise regression of the full 

quadratic model in order to construct the final model consisting of nine main effects, one 

interaction term, and one second-order polynomial term.  The statistical report for the 

regression model for mission value is displayed in Appendix A.  JMP provides the R-

square values produced by the remaining terms in the model at each iteration of the 

stepwise process.  Table 9 displays the significant model terms and corresponding R-

square values.  Next, we evaluated the R-square values at the “knee in the curve” 

displayed in Figure 28 using the F test described previously in this chapter.   

 

  Table 9. Significant Model Terms and Corresponding R-square Values for Mission 
Value Model. 

 

Terms Parameter R-Square 
1 4Radius 0.52544 
2 1OprT 0.67606 
3 EHoriz 0.76483 
4 EOprT 0.81134 
5 (EHoriz-35.9408)*(EOprT-35.9651) 0.82657 
6 3Radius 0.84766 
7 1Radius 0.86559 
8 (4Radius-75.0007)*(4Radius-75.0007) 0.89281 
9 4Horiz 0.90568 
10 3Horiz 0.91541 
11 4OprT 0.92098 
12 1Horiz 0.92458 
13 3OprT 0.92889 
14 (3Horiz-6.00654)*(3OprT-5.98118) 0.93172 
15 (EOprT-35.9651)*(EOprT-35.9651) 0.93652 
16 1Speed 0.93808 
17 2Radius 0.94023 
18 2OprT 0.94130 
19 (2OprT-1.99919)*(4OprT-6.00765) 0.94293 
20 (EHoriz-35.9408)*(4Radius-75.0007) 0.94445 
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Figure 28. R-Square Value and Corresponding Terms from Stepwise History for 
Mission Value Model. 

 

Our goal was to maintain a meaningful explanation of the variance within the 

model and keep the significant factors to a minimum.  While R2 provides a measure of 

the explained variance within a given model, it can be misleading when the model 

contains many regressors compared to the size of the sample (Devore, 2004).  We 

explored the addition of each term to the model using the model utility F test. With the   

F test, we can develop an assessment as to whether additional predictors provide a 

significant increase to the explanation of the model (Devore, 2004).   

Table 10 displays the sequential F test for the full model containing all twenty 

remaining terms from the stepwise history.  The right-hand side of the table displays the 

critical values for the F Distribution for a test with α set at 0.0001, 0.0010, 0.0100, and 

0.0500 for comparison.  For the study, we were interested in the level of significance with 

α = 0.0001.  As we move down the table, we are adding predictors and interested in the 

case where the f-statistic is less than the F critical value for the first time.  For our model, 

this occurs when adding the twelfth regressor.  We conclude that the addition of the first 

eleven regressors contribute significantly to the model. 
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Table 10. Model Utility F-test for Twenty Terms Selected in the Stepwise 
Regression for the Mission Value Model. 

 
 

Figure 29 displays the actual value by predicted plot for the final model consisting 

of 9 main effects, 1 two-way interaction, and 1 second-order polynomial.  The eleven 

terms account for 92% of the variance within the model.  Two predictors accounted for 

nearly 68% of the variance within the model:  Class IV operating radius at 53%, and 

Class I operating time for another 15%.  All of the factors were significant with a   

Prob>|t| <0.0001.  Before exploring the significant factors and interactions, we verified 

the model’s validity. 

Recall that the model’s summary statistics such as the t and F ratios as well as the 

R2 value depend on several assumptions.  We checked the validity of the assumptions by 

first investigating the actual value by predicted plot.  Figure 29 indicates that the 

relationship between the response variable and the regressors is linear.  Next, we 

confirmed that the residuals displayed a mean of zero and constant variance by observing 

the residual by predicted value plot in Figure 30.  Finally, we checked the normality 

assumption with a histogram and Normal quantile plot of the residuals displayed in 

Figure 31.  The plots, along with a Shapiro-Wilk value of 0.99 at a significance of 0.46, 

indicate that we can safely assume the residuals meet the Normality assumption. 

n = 272 numerator denominator
Terms SSE df df f 0.0001 0.0010 0.0100 0.0500

1 7.49E+11
2 5.11E+11 1 269 125.07435 15.6003 11.0693 6.7300 3.8763
3 3.71E+11 1 268 101.16488 15.6021 11.0702 6.7304 3.8764
4 2.98E+11 1 267 65.80961 15.6039 11.0712 6.7307 3.8765
5 2.74E+11 1 266 23.36293 15.6057 11.0721 6.7311 3.8767
6 2.40E+11 1 265 36.69850 15.6075 11.0730 6.7315 3.8768
7 2.12E+11 1 264 35.20091 15.6093 11.0740 6.7318 3.8769
8 1.69E+11 1 263 66.79908 15.6111 11.0749 6.7322 3.8771
9 1.49E+11 1 262 35.74072 15.6130 11.0759 6.7326 3.8772

10 1.33E+11 1 261 30.03970 15.6149 11.0769 6.7330 3.8773
11 1.25E+11 1 260 18.30804 15.6167 11.0778 6.7334 3.8775
12 1.19E+11 1 259 12.35303 15.6186 11.0788 6.7337 3.8776
13 1.12E+11 1 258 15.66285 15.6205 11.0798 6.7341 3.8778
14 1.08E+11 1 257 10.63874 15.6225 11.0808 6.7345 3.8779
15 1.00E+11 1 256 19.35920 15.6244 11.0818 6.7349 3.8780
16 9.77E+10 1 255 6.43972 15.6264 11.0828 6.7353 3.8782
17 9.43E+10 1 254 9.12737 15.6283 11.0838 6.7357 3.8783
18 9.26E+10 1 253 4.61943 15.6303 11.0849 6.7361 3.8785
19 9.00E+10 1 252 7.18978 15.6323 11.0859 6.7365 3.8786
20 8.76E+10 1 251 6.87798 15.6343 11.0870 6.7369 3.8788

F  α,k -l,n- (k+ 1)
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Figure 29. Actual by Predicted Value Plot for Final Mission Value Model.  

 

 

Figure 30. Residual by Predicted Value Plot for Final Mission Value Model. 
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Figure 31. Histogram and Normal Quantile Plot of Residuals for Final Mission Value 
Model. 

 

5. Significant Factors 
As mentioned in the previous section, Class IV operating radius and Class I 

operating time explained 68% of the variation in the mission value.  In Section B, we saw 

that the optimization interval dominated the other factors with its effect on the response.  

Our new design, with the optimization interval set at one, presents significant findings 

involving other factors.  The Prediction Profiler in Figure 32 indicates that Class IV 

operating radius has the strongest effect on mission value.  Class I operating time, ERMP 

time horizon and operating time provide a lesser effect.  The remaining main effects 

demonstrate a weak effect on the response. 

The second-order polynomial term for Class IV operating radius also introduces a 

curvilinear effect.  While an increase in the Class IV operating radius tends to increase 

the overall mission value, there is a point of diminishing returns.  We also note that there 

is a direct relationship between Class IV operating radius and mission value.  The same 

trend occurs for Class I operating time and mission value.  However, ERMP time horizon 

demonstrates an inverse relationship with mission value.  We explore this 

counterintuitive effect later in this section.  
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Figure 32. Prediction Profiler for Final Mission Value Model. 

 

We explored the significant factors further using JMP’s partitioning platform.  

JMP allows the analyst to generate regression trees as a method of exploratory modeling.  

Regression trees employ a binning and averaging process.  The software’s algorithm 

evaluates all of the predictor values in order to determine the optimum split in the tree.  

The predictor value that generates the highest reduction in total sum of squares is selected 

to create the branch in the tree (Sall et al., 2004). 

Figure 33 displays the regression tree for mission value after the first two splits.  

In the first split, the tree indicates that when Class IV aircraft have an operating radius of 

greater than or equal to 68.9 km, the overall mission value tends to be higher.  In fact, the 

mean of the resulting mission value represents an increase by 8.2% of the total mission 

value range generated by our design.  This also corresponds to a two percent increase 

over the mission value of the baseline scenario.  The Class I operating time variable 

generates the second split.  For UAV configurations where Class IV aircraft have an 

operating radius above 68.9 km, Class I operating time is the best predictor of mission 

value.  Class I platforms with an operating time greater than 0.901 hrs increase the mean 

mission value by 18.5% of the total mission value range.  The significance of this finding 

is that by considering levels for only two airframe factors out of twenty-five, we can 
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increase the mean of the mission value by nearly 19%.  Additionally, an increase in the 

Class I UAV’s operating time by at least 4.26 minutes (8.5% of the base scenario setting) 

accounted for more than a ten percent increase to the mean mission value. Perhaps even 

more interesting, it appears that improvements to the mean mission value can be achieved 

even if the Class IV UAV operates with a maximum radius that is 6.1 km smaller than 

established by the base scenario setting.   

 

Figure 33. Regression Tree for Mission Value Indicating the Significance of Class IV 
Operating Radius and Class I Operating Time. 
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From the regression analysis results, we observed the significance of the Class IV 

operating radius and Class I operating time.  Additionally, the regression tree in Figure 33 

provided an assessment in terms of the significant levels for each factor.  Next, we 

produced a contour plot to demonstrate how the two factors affect the mission value 

together.  Figure 34 displays the contour plot for Class IV operating radius vs. Class I 

operating time.  Filled contour regions depict the mission value as the radius and 

operating time varies.  Red regions in the lower edge of the plot indicate mission values 

less than or equal to 4.0 x 106.  Blue and purple regions in the top and upper-right depict 

mission values greater than 4.3 x 106.  The plot indicates that above average mission 

values can be achieved with a large range of settings as indicated in the region above   

line 1.  We also get a better feel for the diminishing returns on increased Class IV 

operating radius as the Class I operating time is changed.  Line 2 indicates the point at 

which substantial enhancements to mission value by Class IV operating radius begin to 

level-off.  This effect varies across a wide range of Class I operating time mission values. 

 

Figure 34. Contour Plot for Mission Value with Class IV Operating Radius vs. Class 
I Operating Time. 
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The next section explores the significant interactions observed within the model.  

Our discussion makes use of interaction plots to investigate the effect between ERMP 

time horizon and operating time.  The plots further highlight the diminishing return on 

mission value due to increased operating radius of Class IV aircraft. 

 

6. Significant Interactions 

Our final model for mission value contained one interaction term, ERMP time 

horizon with ERMP operating time.  Recall from Chapter II that the Predator-based 

ERMP UAV is the largest of the five UAVs investigated in this study.  It serves as a 

division level asset and is capable of serving all mission requirements except for SIGINT 

payloads.  Significant findings and insights may assist in the development of employment 

considerations for this unmanned platform. 

Figure 35 displays the profile plot indicating interaction between the two factors.  

In the plot, the y-axis represents the mission value.  The smaller plots display the effect of 

two factors on the response.  Solid lines indicate interaction between terms.  There is one 

term listed on the diagonal plot for each column.  The x-axis at the bottom of the graph 

represents the term’s range.  Changes in the term’s value affect the mission value 

according to the slope of the lines found in the plots above and below the diagonal.  The 

plots across each row display two lines, one each for the low and high values of the term 

listed in the diagonal for the given row.  We can assess changes in the response variable 

when the row term is set to its low or high value and we vary the range of a term found in 

the columns to the left or right of the diagonal, holding all other effects constant. 
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Figure 35. Interaction Profile for Final Mission Value Model.  

   

Looking at the middle row, we see ERMP time horizon crossed with ERMP 

operating time on the center-right plot.  The top line represents the change to mission 

value when the time horizon is set at 28.8 hrs.  The fact that this line is nearly flat with a 

slight positive slope indicates that there is only a small increase in mission value as the 

ERMP operating time increases across its entire range.  However, when ERMP time 

horizon is set to its highest level of 43.2 hrs, mission value increases substantially as 

ERMP operating time increases. For our current range of values, the red line (top) 

represents the highest mission values when the horizon time is set to the ERMP UAV’s 

lowest level of 28.8 km.  This finding seems counterintuitive.  It implies that when 

planning for ERMP UAV missions we should be myopic in our approach and consider a 

set of mission areas that become available sooner rather than a larger set of potential 

mission areas over a broader time window.  Upon further investigation of the base 
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time horizon is greater than 28.8, the optimization process attempts to allocate the UAV 

resource to missions of greater value within the extended future time horizon.  In doing 

so, the process skips available missions of lesser value that are closer to the current 

simulation time.  The cumulative and potentially larger value generated from serving 

multiple missions is lost.  Additionally, when the ERMP time horizon is set to 28.8 hrs, 

the mission value increase only slightly as the operating time is increased.  Based on the 

reasoning above, this result also makes sense.  The lowest level for ERMP operating time 

is 28.8 hrs, identical to the platform’s lowest level for time horizon.  The UAV only 

requires 28.8 hrs to serve 99.8% of the missions within the scenario.  Increases in its 

operating time may serve to increase its available loiter time on target.  However, the 

increased loiter time is negligible due to the average mission length of 2.24 hrs for the 

21,317 missions. 

Additional insights gained from Figure 35 involve the combined effects of Class 

IV operating radius and ERMP time horizon.  The center-top plot indicates that relatively 

high mission values are obtained when the Class IV operating radius is set at its 

maximum level of 90 km and ERMP time horizon is set at its lowest level of 28.8 hrs.  

However, we also observe a point of diminishing return for the effect of Class IV 

operating radius on mission value.  The center-left plot on the interaction profile indicates 

this effect.  When ERMP time horizon is set to its lowest level of 28.8 hrs, the effect of 

Class IV operating radius on mission value diminishes around 85 km, when all other 

effects remain constant.  The contour plot in Figure 34 also suggests high mission values 

around this range.  We observe that when Class I operating time is as low as 0.794 hrs 

and Class IV operating radius is around 86.5 km, the simulation generates the sixth 

highest mission value, increasing by 21% of its entire range.     

The insights gained from exploring the interaction between ERMP time horizon 

and operating time, Class IV operating radius, and Class I operating time are significant.  

In the scenario examined by our study, the results indicate that overall mission success 

can be exploited by a relatively small ERMP time horizon and platform operating time.  

The next section develops an alternate regression model using percent mission coverage 
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as the response variable.  We will discuss the development process, parameter estimates, 

and significant factors of the model.   

 

D. PERCENT MISSION COVERAGE MODEL 
The regression model developed for mission value provides an initial assessment 

to the solution of ASC-U.  However, it is difficult to relate mission value to a tactical 

measure of effectiveness.  This section describes the development of a regression model 

for the overall percent mission coverage for the scenario.  We begin with some initial 

observations by reviewing the distribution of percent mission coverage and a scatterplot 

for the data.  The section continues with a description of the final model and exploration 

of significant factors.  

Figure 36 displays the distribution and summary statistics of percent mission 

coverage for all 272 designs.  The base scenario design generated a percent mission 

coverage of 82.79%, slightly above the mean of 82.43%.  A Shapiro-Wilk value of 0.99 at 

a significance of 0.97 indicates that a normal distribution fits the data well.  

 

Figure 36. Distribution and Summary Statistics of Percent Mission Coverage. 
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After reviewing the summary statistics, we generated the scatterplot for percent 

mission coverage in Figure 37.  We observe similar extreme points as identified in Figure 

21 for mission value.  Interestingly, two design points, 21 and 22, replace 43 and 85 for 

fourth and fifth highest percent mission coverage values respectively.  This finding 

indicates that mission value does not necessarily depict equivalent percent coverage.  In 

the next section, we discuss the regression analysis that investigates these observations 

further. 

 

Figure 37. Scatterplot of Percent Mission Coverage for Design Points. 

 

1. Final Model 
Our analysis followed the same path as the development process for the mission 

value model described in Section C of this chapter.  We explored the main effects, first 

order interactions, and second-order polynomial terms using stepwise mixed selection 

and standard least squares regression.  We evaluated the history generated in the stepwise 

regression of the full quadratic model in order to construct a final model consisting of ten 

main effects and one second-order polynomial.  The statistical report for the regression 

model for percent mission coverage is displayed in Appendix B.  Table 11 displays the 

significant model terms and corresponding R-square values.  Next, we evaluated the 
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terms using the F test.  Table 12 displays the sequential F test for twenty-nine remaining 

terms from the full model.  Based on the small f-statistic for the seventh term, we 

removed it from our final model.  While terms 8 through 14 proved significant to the 

model, we decided to keep terms 8 through 12 in an attempt to avoid overfitting the 

model and maintain similar predictive power as our model for mission value. 

 

Table 11. Significant Model Terms and Corresponding R-square Values for Percent 
Mission Coverage Model.  

 

Terms Parameter R-Square
1 1OprT 0.54420
2 4Radius 0.73984
3 1Radius 0.79817
4 EHoriz 0.83334
5 4Horiz 0.85283
6 3Horiz 0.86738
7 (3Horiz-6.00654)*(4Horiz-6.00434) 0.87000
8 EOprT 0.88547
9 3OprT 0.89683
10 (4Radius-75.0007)*(4Radius-75.0007) 0.90995
11 1Horiz 0.91762
12 4OprT 0.92464
13 3Radius 0.93162
14 1Speed 0.93574
15 2OprT 0.93809
16 (2OprT-1.99919)*(2OprT-1.99919) 0.94353
17 (EHoriz-35.9408)*(EOprT-35.9651) 0.94707
18 (3Horiz-6.00654)*(3OprT-5.98118) 0.95030
19 2Horiz 0.95144
20 ETrans 0.95145
21 (ETrans-0.49934)*(2Horiz-2.0036) 0.95289
22 (EOprT-35.9651)*(EOprT-35.9651) 0.95450
23 4Trans 0.95239
24 2Radius 0.95350
25 (3Radius-40.0978)*(3Radius-40.0978) 0.95514
26 4Speed 0.95591
27 (ETrans-0.49934)*(4Radius-75.0007) 0.95662
28 ESpeed 0.95698
29 (ESpeed-240.495)*(3OprT-5.98118) 0.95791
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Table 12. Model Utility F-test for Twenty-nine Terms Selected in the Stepwise 
Regression for Mission Percent Coverage.  

 

Figure 38 displays the actual by predicted percent mission coverage plot for the 

final model.  All of the factors were significant with a Prob>|t| <0.0001.  The eleven 

terms account for 92% of the variance within the model.  Two predictors accounted for 

nearly 74% of the variance within the model:  Class I operating time at 54%, and Class 

IV operating radius for another 20%.  This result was opposite that of the mission value 

model, which had Class IV operating radius accounting for 53% and Class I operating 

time for another 15%. 

n = 272 numerator denominator

Terms SSE df df f 0.0001 0.0010 0.0100 0.0500
1 0.035946
2 0.020517 1 269 202.28733 15.6003 11.0693 6.7300 3.8763
3 0.015917 1 268 77.44711 15.6021 11.0702 6.7304 3.8764
4 0.013143 1 267 56.34660 15.6039 11.0712 6.7307 3.8765
5 0.011606 1 266 35.22608 15.6057 11.0721 6.7311 3.8767
6 0.010459 1 265 29.08245 15.6075 11.0730 6.7315 3.8768
7 0.010252 1 264 5.31781 15.6093 11.0740 6.7318 3.8769
8 0.009032 1 263 35.52874 15.6111 11.0749 6.7322 3.8771
9 0.008136 1 262 28.85256 15.6130 11.0759 6.7326 3.8772

10 0.007102 1 261 38.01830 15.6149 11.0769 6.7330 3.8773
11 0.006496 1 260 24.21723 15.6167 11.0778 6.7334 3.8775
12 0.005943 1 259 24.12402 15.6186 11.0788 6.7337 3.8776
13 0.005392 1 258 26.33869 15.6205 11.0798 6.7341 3.8778
14 0.005067 1 257 16.48008 15.6225 11.0808 6.7345 3.8779
15 0.004882 1 256 9.72016 15.6244 11.0818 6.7349 3.8780
16 0.004453 1 255 24.57174 15.6264 11.0828 6.7353 3.8782
17 0.004174 1 254 16.95005 15.6283 11.0838 6.7357 3.8783
18 0.003920 1 253 16.43830 15.6303 11.0849 6.7361 3.8785
19 0.003830 1 252 5.91667 15.6323 11.0859 6.7365 3.8786
20 0.003829 1 251 0.06687 15.6343 11.0870 6.7369 3.8788
21 0.003755 1 250 4.91819 15.6364 11.0880 6.7373 3.8789
22 0.003667 1 249 5.96095 15.6384 11.0891 6.7378 3.8791
23 0.003538 1 248 9.08561 15.6405 11.0902 6.7382 3.8792
24 0.003477 1 247 4.31076 15.6426 11.0912 6.7386 3.8794
25 0.003421 1 246 4.03289 15.6447 11.0923 6.7390 3.8795
26 0.003393 1 245 2.03795 15.6468 11.0934 6.7394 3.8797
27 0.003320 1 244 5.36951 15.6489 11.0945 6.7399 3.8799
28 0.003231 1 243 6.62582 15.6511 11.0956 6.7403 3.8800
29 0.003164 1 242 5.14026 15.6533 11.0968 6.7408 3.8802

F α,k-l,n- (k+ 1)
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Figure 38. Actual by Predicted Percent Mission Coverage Plot for Final Percent 
Mission Coverage Model. 

 

 

Figure 39. Residual by Predicted Percent Mission Coverage Plot for Final Percent 
Mission Coverage Model. 

     



 81

We observed the residuals in Figure 39 with an approximate mean of zero and 

random presentation, validating the assumption of homoscedasticity.  Next, we checked 

the normality assumption with a histogram and Normal quantile plot of the residuals 

displayed in Figure 40.  The plots along with a Shapiro-Wilk value of 0.99 at a 

significance of 0.26 indicates the residuals meet the Normality assumption. 

 

Figure 40. Histogram and Normal Quantile Plot of Residuals for Final Percent 
Mission Coverage Model. 

 

2. Significant Factors 
The percent mission coverage model contains a shift in significant factors 

compared to the mission value model developed in Section C.  We see that the strength of 

the effect for Class I operating time and Class IV operating radius have reversed.  As 

mentioned in the previous section, Class I operating time and Class IV operating radius 

explained 74% of the model.  The Prediction Profiler in Figure 41 indicates that Class I 

operating time has the strongest effect on percent mission coverage.  Class IV operating 

radius, Class I operating radius, and ERMP time horizon demonstrate a lesser effect.  The 

remaining main effects display a relatively weak effect on percent coverage. 
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Figure 41. Prediction Profiler for Final Percent Mission Coverage Model. 

 

As in the mission value model, ERMP time horizon demonstrates an inverse 

relationship with percent coverage.  We also see this effect with Class IV time horizon.  

However, Class I time horizon matches our expectations of how the size of a “planning 

window” should effect the overall mission coverage for a scenario.  We can explain the 

“myopic” behavior for Class IV UAVs in a similar fashion as we did for ERMP UAVs in 

Section C.6.  We ran the experiments with the Class IV time horizon set at 4.8 to 7.2 hrs.  

Ninety-four percent of the missions within the scenario have a length of 4.8 hours or less.  

We suspect that the UAV could complete many of these missions prior to other valuable 

missions becoming available in the future.  Further support for this concept is the fact that 

the average mission length is 2.24 hrs for 99.8% of the missions.  As the time horizon 

increases, the simulation attempts to allocate Class IV UAVs to missions that are more 

valuable in the future.  The result is the potential loss of missions that occur sooner and 

hence the loss of mission coverage due to a cumulative effect. 

We explain the direct relationship of Class I time horizon to percent mission 

coverage in a different way.  We ran the experiments with the Class I time horizon set at 

0.664 to 0.996 hrs.  The optimization interval is set to occur every hour.  The simulation 
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is only able to allocate UAVs to missions “seen” within the time window for Class I 

platforms.  This results in the simulation not being able to “see” missions that occur 

beyond the time of the next optimization sequence.  Therefore, Class I UAVs are 

assigned to missions that are available at the time of the optimization sequence and up to 

a fraction of the time (0.664-0.996) until the next optimization.  Since the Class I also 

varies its operating time between 0.664 and 0.996 hrs and its transition time between 

0.128 and 0.192 hrs, Class I UAVs that launch and serve mission areas at each 

optimization interval may not be available for higher value missions during the next 

optimization sequence.  The Class I UAV is unique; it is the only platform with horizon 

and operating times less than the optimization interval of one.  We suspect that increasing 

the horizon and operating time ranges for Class I platforms may yield interesting results, 

to include curvilinear effects where we see a point of diminishing returns or inverse 

effects on percent mission coverage. 

Figure 42 displays the regression tree for percent mission coverage after the first 

five splits.  In the first split, the tree indicates that when Class I aircraft have an operating 

time of greater than or equal to 0.787 hrs, the overall percent coverage tends to be higher.  

While this only results in a one percent increase to the mean percent coverage, it 

represents nearly an eight percent increase over the range of the results for this MOE.  

Class I operating time generates the second split, increasing the mean by another percent 

at operating times greater than or equal to 0.905 hrs.  The third split falls under Class I 

operating time of less than 0.787 hrs and occurs when Class IV operating radius is 

delineated above and below 69.0 km.  The fourth split occurs when Class I operating time 

is between 0.787 and 0.905 hrs.  The significant factor in this split is Class IV operating 

radius, and results in an overall mean of 82.94% for percent coverage.  The final split is 

displayed on the right-hand side of the figure.  It is represented by Class IV operating 

radius >= 69.1 km and falls under Class I operating times >= 0.905 hrs.  The result is a 

two percent increase to the percent coverage of the baseline scenario, which corresponds 

to twenty percent of the observed range of the MOE.     
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Figure 42. Regression Tree for Percent Mission Coverage Indicating the Significance 
of Class I Operating Time and Class IV Operating Radius. 

 

As in the mission value model, we produced a contour plot to demonstrate how 

Class I operating time and Class IV operating radius relate together with their effect on 

percent mission coverage.  Figure 43 displays the contour plot for Class IV operating 

radius vs. Class I operating time.  Filled contour regions depict the percent mission 

coverage as the two factors vary.  The region to the right of the first line on the left 

indicates percent mission coverage at or above eighty percent.  We point out that such 

results occur when both factors are set below the base scenario settings.  This result may 

be of interest when assessing platform requirements in future studies.  Regions to the 

right of the second line indicate percent coverage at or above 83.7%.  Here we see a 

trade-off required for the factors such that when one UAV is operating at or below its 

base scenario setting, the other must operate at levels above the base setting.  However, in 

the case of the Class I operating time, this amounts to only a few minutes as noted in 

Section C.5 of this chapter.   
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Figure 43. Contour Plot for Percent Mission Coverage with Class IV Operating 
Radius vs. Class I Operating Time. 

 

E. INTERESTING OBSERVATIONS 
This section describes several interesting observations identified during our 

analysis.  We begin with a comparison of the two measures of effectiveness used in our 

regression models.  Additionally, we discuss the most significant factor effects for each 

measure of effectiveness generated by the ASC-U version investigated in our study.  

Next, we use a parallel plot to highlight the importance of reviewing more than one or 

two MOEs.  Finally, we interpret the signs on the model coefficients. 

 

1. Measure of Effectiveness Comparison 
We developed two regression models using mission value and percent mission 

coverage.  Our intent was to investigate how the UAV performance characteristics 

influenced ASC-U’s solution.  After conducting regression analysis for our mission value 

model, we realized it was difficult to get a tactical sense of the MOE.  Upon conducting 

regression analysis for percent mission coverage, we immediately recognized a difference 
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in the two measures based on their opposing significant factors.  The switch between 

Class IV operating radius and Class I operating time demonstrates a fundamental 

difference between the two.   

Initially, mission value and percent mission coverage seem to imply a similar 

measure of effectiveness.  Recall from Chapter II that mission value is derived from a 

value rate that is dependent on the mission area and required sensor package.  This 

“weighting” system may result in a scenario with a mission value that does not 

correspond to an equivalent percent mission coverage.  For example, mission areas with 

more valuable sensor package requirements may be served in such a way to limit multiple 

servicing of other mission areas.  The cumulative effect results in a high mission value, 

but relatively low percent mission coverage.     

Figure 44 displays the difference between the two measures by mapping the 

combined 514 runs from our initial and final DOEs.  The green plot represents the 257 

design points from the initial DOE where we varied the optimization interval from one to 

ten simulation hours.  The blue plot represents our final DOE where optimization interval 

remained fixed at one simulation hour.  The red plots indicate the corresponding percent 

mission coverage for each design point.  Notice that mission value is “over 

representative” of the overall percent coverage across most of the initial design.  

However, the mission values are more representative of the percent coverages in the final 

design.  We believe that the larger optimization intervals drive the allocation of UAV 

assets to high value areas and reduce the cumulative effect of covering more missions 

when optimization intervals are small. 

 After exploring the MOEs used in our two regression models, we turned our 

attention towards the significant factors that affect a change in the mean value generated 

by our design runs for each MOE.  We employed JMP’s partitioning platform in order to 

identify the regressor involved in the first split against each MOE as the response 

variable.  The results identified the factor responsible for the optimum split, separating 

the response variable into two groups of different means.  We identified the significant 

factor, the level of the factor identifying the branch with the increased mean, the percent 
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increase over the range of the examined MOE, and the percent increase in coverage 

(except in the case of mission value).  Table 13 displays the results of the exploration. 

Figure 44. Comparison of Mission Value and Percent Mission Coverage for Initial 
and Final Design of Experiments. 

 

The most significant increase in percent coverage occurred for the meteorological 

sensor package at 15.12% increase to the mean when Class III operating radius is set at 

greater than or equal to 41.9 km.  This result corresponds to a 30.24% increase over the 

entire range of percent coverage for meteorological missions.  While the other splits did 

not cause a substantial increase to the mean of the other MOEs, we note that five splits 

resulted in a 15% or greater increase over the range of the MOE studied.  Class IV 

operating radius and Class I operating time with seven splits each represented the largest 

number of splits for the twenty-one MOEs.  Class III operating radius produced one split.  

It was the most significant factor to influence the mean of meteorological percent 

coverage.  Interestingly, Class I operating time was the most significant factor for percent 

coverage by type of all the UAVs.  Finally, supply delivery missions were never allocated 
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UAVs.  While this is interesting, there were only five such missions in the entire 

scenario. 
 

Table 13. First Split on Partition of MOEs Indicating Significant Factor and Percent 
Increase over Range of MOE and Percent Increase in MOE Coverage. 

 

 Figure 45 displays a parallel plot to highlight the importance of reviewing more 

than one or two MOEs.  The plot allows us to explore the relative results of all of the 

MOEs simultaneously.  We have selected the six design points that resulted in extreme 

values as previously noted in Figure 24 (points 11, 14, 43, 85, and 253 in green and point 

140 in red).  We note that while the design points in green represent the highest mission 

values within our DOE, they result in some of the lowest percent coverages for numerous 

MOEs.  Regions 1 and 2 emphasize this fact by indicating where designs 85 and 253 are 

separated from designs 11, 14, and 43 within the bimodal distribution of meteorological 

percent coverage (Meteo).  Additionally, we observe design point 43 representing one of 

the lowest outcomes for FOPEN/LIDAR percent coverage (FOPEN) in region 4.  

Alternatively, design point 140 resulted in the lowest mission value out of 272 runs.  

However, it does not represent the lowest percent coverage for several MOEs.  This is 

MOE              
(Response)

Significant Factor 
(First Split) Base Scenario Setting

Partition Value 
Creating Positive 
Increase on Mean

Percent Increase over 
Range of MOE

 Percent Increase in 
Coverage

Value 4Radius 75 km >= 68.9 km 8.21%
Percent Coverage 1OprT 0.830 hrs >= 0.787 hr 8.28% 0.82%
Supply Delivery
Meterological 3Radius 40 km >= 41.9 km 30.24% 15.12%
COMINT 4Radius 75 km >= 68.9 km 19.59% 6.60%
Weapon EOprT 36 hrs >= 38.8 hr 15.54% 3.33%
ELINT 4Radius 75 km >= 68.9 km 15.43% 3.82%
Class II UAV 1OprT 0.830 hrs >= 0.816 hr 14.36% 0.50%
Clas III UAV 1OprT 0.830 hrs >= 0.894 hr 13.00% 0.57%
Class I UAV 1OprT 0.830 hrs >= 0.816 hr 11.31% 1.06%
Class IV UAV 1OprT 0.830 hrs >= 0.789 hr 10.38% 0.21%
ERMP 1OprT 0.830 hrs >= 0.787 hr 7.35% 0.16%
GPS Designator EHoriz 36 hrs < 30.7 hr 29.16% 6.11%
Laser Designator 4Radius 75 km >= 77.6 km 15.01% 1.70%
EO/IR/LR 1OprT 0.830 hrs >= 0.770 hr 9.41% 1.02%
SAR/MTI 4Radius 75 km >= 67.6 km 7.29% 0.65%
Comms Relay EHoriz 36 hrs < 36.7 hr 6.85% 0.60%
EW EOprT 36 hrs >= 32.3 hr 6.35% 1.37%
Mine Detection 4Radius 75 km >= 66.2 km 5.90% 0.61%
CBRNE 4Radius 75 km >= 64.2 km 5.27% 1.47%
FOPEN/LIDAR EOprT 36 hrs < 42.9 hr 1.63% 0.03%
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evident in region 3 for FOPEN coverage.  Again, we point out that all design points 

resulted in 0 percent coverage for supply delivery (Supply), as indicated in region 5. 

 The next section provides an interpretation of the signs on the model coefficients.  

As previously noted in the chapter, the time horizon factor influenced the response 

variable counter to our expectations for four of the five UAVs.  We discuss additional 

factors that have opposite signs than predicted. 

 

2. Interpretation of Model Coefficients 
We had expectations on how UAV performance capabilities would influence the 

solution generated by ASC-U.  However, several of the signs on the coefficients within 

the models are counterintuitive.  Table 14 provides a comparison between our predicted 

coefficient signs and the actual signs generated within the regression models for each 

UAV type.  Factors with counterintuitive signs are highlighted in yellow and bold type.  

It is important to note that the difference between the signs is not due to multicollinearity 

between the regressors; our design methodology eliminates this as a possibility.  In 

addition to reviewing the pairwise correlations between the factors of our design matrix 

(see Chapter IV, Section B.2), we also examined the variance inflation factors (VIF) 

between regressors within our final models.  The magnitude of the VIF serves as an 

important multicollinearity diagnostic.  The minimum and maximum VIF values within 

our models were 1.00 and 1.01, respectively.  VIF values greater than 5 indicate serious 

multicollinearity problems between regressors (Montgomery et al., 2001). 

In Table 14, we see that all of the time horizons have a negative slope except for 

Class I UAVs.  We provided our interpretation of the counterintuitive signs for ERMP, 

Class I, and Class IV UAVs in Sections C.6 and D.2 of this chapter.  We offer the same 

explanation for Class II and III UAVs.  We contend that the UAVs with greater range and 

endurance seek out higher value missions and miss the cumulative effect of serving 

several “closer-in” missions.  On the other hand, Class I UAVs are the only type of UAV 

with time horizon interval less than one simulation hour.  They simply do not have the 

“opportunity” to compare additional missions. 
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Figure 45. Parallel Plot Displaying Corresponding Results for MOEs. 
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Table 14 also displays additional, counterintuitive signs for the coefficients of the 

ERMP UAV’s operating radius and the Class II UAV’s operating and transition times.  

The slopes suggest that smaller ERMP operating radii and Class II operating times, as 

well as longer Class II transition times increase mission value and percent mission 

coverages.  While these regressors are not found in the final models for mission value or 

percent mission coverage, they are consistently represented in this way throughout our 

exploratory regression analysis as we constructed our final models.  We do not provide 

an in-depth analysis of these counterintuitive results, except to note that their VIF values 

fall within the range described above.  We recommend further analysis to identify the 

processes within the simulation model that account for these unique results. 

    

Table 14. Comparison of Predicted and Actual Coefficient Signs. 
 
 
 
 
 

ERMP
Time Horizon (hr) + -
Operating Time (hr) + +
Air Speed (km/hr) + +
Operating Radius (km) + -
Transition Time (hr) - -

Class I
Time Horizon (hr) + +
Operating Time (hr) + +
Air Speed (km/hr) + +
Operating Radius (km) + +
Transition Time (hr) - -

Class II
Time Horizon (hr) + -
Operating Time (hr) + -
Air Speed (km/hr) + +
Operating Radius (km) + +
Transition Time (hr) - +

Class III
Time Horizon (hr) + -
Operating Time (hr) + +
Air Speed (km/hr) + +
Operating Radius (km) + +
Transition Time (hr) - -

Class IV
Time Horizon (hr) + -
Operating Time (hr) + +
Air Speed (km/hr) + +
Operating Radius (km) + +
Transition Time (hr) - -

Predicted Sign    
on CoefficientFactorsUAV Types Actual Sign      

on Coefficient
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VI. CONCLUSIONS 

If the Division Commanders want a UAV at their level and have 
nothing now, we ought to give it to them. 

 

LTG Scott Wallace, CG V Corps (2003) 
(Sinclair, 2005)  

 

The U.S. Army Training and Doctrine Command (TRADOC) Analysis Center 

(TRAC) and the Modeling, Virtual Environments, and Simulations Institute (MOVES) at 

the Naval Postgraduate School, Monterey, California developed the Assignment 

Scheduling Capability for UAVs (ASC-U) simulation tool to assist in the analysis of 

UAV requirements.  TRAC selected ASC-U for the Army-wide UAV Mix Analysis that 

supports investment strategies involving technology for current operations, transitioning 

to modular forces, and developing and fielding the Future Combat Systems (FCS) 

(Witsken, 2004).  This thesis has explored the effects of twenty-six simulation and UAV 

factors on the Measures of Effectiveness (MOE) generated by ASC-U.   

We combined data analysis, exploratory modeling and a Nearly Orthogonal Latin 

Hypercube design to examine 514 design points.  In doing so, we expanded the use of 

ASC-U from running single scenarios with baseline settings to a full exploration process 

across multiple factors.  The application and insights gained will support current and 

future warfighters.  The conclusions suggest the following: 

• The optimization interval significantly influences the solution. 

• Mission value and percent mission coverage are not equivalent MOEs. 

• Optimization interval of one simulation hour provides better correlation 
between mission value and percent mission coverage. 

• Each measure of effectiveness has a different set of significant factors. 

• Counterintuitive time horizon coefficients highlight models’ allocation 
process. 

• Class I operating time and Class IV operating radius are main factors 
influencing 14 of 21 MOEs. 
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• Class IV operating radius begins to make significant improvement to percent 
mission coverage at below baseline settings. 

• Longer Class I operating times increase all other UAV mission percent 
coverages. 

• State-of-the-art Design of Experiment and data mining techniques yield 
insights impossible to gain otherwise. 

   

A. IMMEDIATE IMPACT 
The Army Chief of Staff tasked TRADOC to evaluate the current, modular, and 

Future Combat Systems (FCS) force options with regard to UAVs and develop an 

investment strategy.  The analysis supports the development of an acquisition strategy for 

UAVs at the Division and Brigade level.  Additionally, the analysis assists in defining the 

near term (2008) UAV force structure and the investment strategy for the mid term 

(2013), and far term (2018). 

This thesis addresses the directives of TRAC by providing an analysis of the time 

horizon and optimization interval used in ASC-U’s optimization process, UAV 

performance characteristics, and the appropriate design of experiment tools used in the 

Army UAV Mix Analysis.   

 

B. FOLLOW ON RESEARCH 

This thesis blended different techniques involving simulation, optimization, and 

state-of-the-art design of experiments to achieve substantial insights regarding the 

allocation of UAVs within an advanced assignment and scheduling simulation.  While we 

made significant advancement in combining DOE and data mining techniques with the 

simulation, we suggest the following list for future research: 

• Continue integration of DOE tools with the simulation interface. 

• Study additional scenarios developed by TRAC. 

• Explore effects of optimization interval at levels below one simulation hour. 

• More rigorously determine the range of factors through the acquisition 
community. 

• Study trade-offs between UAV capabilities in more detail. 
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• Explore number and type of UAVs at different echelons. 

• Expand simulation to account for attrition and maintainability. 

• Expand factor ranges to explore possible curvilinear effects. 

• Investigate MOEs displaying bimodal distributions. 

• Conduct cost analysis on UAV performance characteristics in relation to the 
measures of effectiveness generated by the simulation. 

• Establish parameters representing mission area densities and study their 
effects on the simulation’s solution. 
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APPENDIX A. MISSION VALUE MODEL 

The figure below displays the statistical report for the final regression model for 

mission value. 
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APPENDIX B. PERCENT MISSION COVERAGE MODEL 

The figure below displays the statistical report for the final regression model for 

percent mission coverage. 
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APPENDIX C. METEOROLOGICAL REGRESSION TREE 

 

 

 The regression tree above indicates that when Class III aircraft have an operating 

radius of greater than or equal to 41.9 km, the mean percent coverage for meteorological 

missions is increased by 16% for the scenario used in this study.  This also corresponds to 

nearly a 200% increase to the meteorological percent coverage of the baseline scenario.   

 

 

All Rows

3Radius<41.9

3Radius>=41.9

0

0.1

0.2

0.3

0.4

0.5
M

et
eo

All Rows

3Radius<41.9 3Radius>=41.9

Count
Mean
Std Dev

      272
 0.344693
0.1231748

All Rows

Count
Mean
Std Dev

      165
 0.246643
0.0201571

3Radius<41.9

Count
Mean
Std Dev

      107
0.4958916
0.0108932

3Radius>=41.9

All Rows

3Radius<41.9

3Radius>=41.9

0

0.1

0.2

0.3

0.4

0.5
M

et
eo

All Rows

3Radius<41.9 3Radius>=41.9

Count
Mean
Std Dev

      272
 0.344693
0.1231748

All Rows

Count
Mean
Std Dev

      165
 0.246643
0.0201571

3Radius<41.9

Count
Mean
Std Dev

      107
0.4958916
0.0108932

3Radius>=41.9



 102

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 103

APPENDIX D. COMINT REGRESSION TREE 

 

The regression tree above displays the first three splits for COMINT percent 

coverage.  The third split on the right is represented by ERMP time horizon >= 36.3 hrs 

and falls under Class IV operating radius >= 73.4 km.  The result is a two percent 

increase to COMINT percent coverage of the baseline scenario.  This corresponds to nine 

percent of the variation of the MOE. 
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APPENDIX E. JAVA CODE FOR DATA CONSOLIDATION 

The Java™ code within this appendix calculates percent mission coverage by 

UAV type and consolidates the results.  Microsoft® Visual Basic® macros were also 

created in order to generated ASC-U input files, calculate MOEs and consolidate the 

results.  The author will provide additional code upon request.   
 
/* 
 * File: CoverageByType.java 
 * Created on May 1, 2006, 11:34 PM 
 */ 
 
/** 
 * @author Christopher J. Nannini 
 * Class to Consolidate Percent Coverage by UAV for 257 Design Points 
 * from ASC-U Write-Output Microsoft Access Database.   
 */ 
 
package ascuManager; 
import java.sql.Statement; 
import java.sql.Connection; 
import java.sql.DriverManager; 
import java.sql.ResultSet; 
import java.text.DecimalFormat; 
 
public class CoverageByType { 
         
    public static void main(String[] args) { 
        DecimalFormat numberFormat = new DecimalFormat("0.00"); 
         
        try { 
            // set-up driver for database connection 
            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 
             
            // identifies Microsoft Access database file 
            System.out.println("Design, " + "Class I, " +  
                   "Class II, " + "Class III, " + "Class IV, " +   
   "ERMP"); 
            for (int fileNumber = 1; fileNumber<258; fileNumber++) { 
                String filename = "C:/Documents and Settings/" + 
                        "Christopher Nannini/Desktop/ + 
    OPTINT DATA COMPLETE/" + 
                        "ASCU" + Integer.toString(fileNumber) + ".mdb"; 
                String database = "jdbc:odbc:Driver={Microsoft Access + 
    Driver(*.mdb)};DBQ="; 
                database+= filename.trim()+      
    ";DriverID=22;READONLY=true}"; 
                 
                // creates a connection to the database 
                Connection con = DriverManager.getConnection(  
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    database ,"",""); 
                 
                // creates a java.sql.Statement to run queries 
                Statement s = con.createStatement(); 
                double totalOpenTime = 0.0; 
                double totalCoveredTime = 0.0; 
                double percentCovered = 0.0; 
                String[] platform = {"Class I", "Class II", 
                "Class III", "Class IV", "ERMP"}; 
                System.out.print("ASCU" +      
    Integer.toString(fileNumber)); 
                for (int i = 0; i<5; i++) { 
                     
                    // build Strings to interact with the database 
                    String columns = "Mission, MissionPlatformType, " + 
                            "openTime, coveredTime "; 
                    String table = " FROM CoverageByType "; 
                    String filter = " WHERE MissionPlatformType='" + 
                            platform[i] + "'"; 
                    String query = "SELECT " + columns + table +   
        filter; 
                    ResultSet rs = s.executeQuery(query); 
                     
                    // iterates through the ResultSet and calculates  
        totals 
                    while (rs.next()) { 
                        String openTime = rs.getString("openTime"); 
                        String coveredTime =      
       rs.getString("coveredTime"); 
                         
                        totalOpenTime = totalOpenTime +  
                                Double.parseDouble(openTime); 
                        totalCoveredTime = totalCoveredTime +  
                                Double.parseDouble(coveredTime); 
                    } 
                    if (totalOpenTime == 0) { 
                        System.out.print(", "); 
                        System.out.print("0.00"); 
                    } 
                    else { 
                        System.out.print(", "); 
                        System.out.print(numberFormat.format( 
                                100*(totalCoveredTime/totalOpenTime))); 
                    } 
                } 
                // close statement and connection to database 
                s.close(); 
                con.close(); 
                System.out.println(""); 
            } 
        } catch (Exception err) { 
            System.out.println("ERROR: " + err); 
        } 
    } 
} 
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